mini1013 commited on
Commit
c005b27
·
verified ·
1 Parent(s): 3a7e973

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 버츠비 틴티드립밤 로즈+ 매그놀리아 옵션없음 케이디글로벌
14
+ - text: 롬앤 베러 댄 쉐입 팩트 쿨톤 쉐딩 셰이딩 01 오트그레인 9.5g 옵션없음 고투베이직
15
+ - text: 그랑디오즈 마스카라/랑콤 스머지 프루프 롯데쇼핑(주)
16
+ - text: 매장정품 샤넬 립 앤 치크 밤 헬시핑크 레드 까멜리아 VITAL BEIGE 2561413 ALBERTA LTD.
17
+ - text: 페니 맥 MAC 아이 브로우 스타일러 0.9g 스파이크드 안느의집
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.7902892561983471
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 13 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 1.0 | <ul><li>'하트퍼센트 도트 온 무드 립펜슬 슬림 슬림]로즈베이지 에스앤제이(S&J)'</li><li>'모든순간 뭉치지않는 립라이너 블루와인 3개 옵션없음 해연개발'</li><li>'프로랑스 32호 입술펜슬 오토 립라이너 5W525AC824 옵션없음 주도매'</li></ul> |
66
+ | 7.0 | <ul><li>'에스티 로더 2024 홀리데이 블록버스터 세트 (11종 세트 & 파우치 + 홀리데이 쇼핑백 증정) 에스티 로더'</li><li>'삐아 타로 에디션 2종 세트 (오버 글레이즈 스틱+레디 투 웨어 다우니 치크) 삐아'</li><li>'[롯데백화점] 디올 NEW 디올 홀리데이 메이크업 뷰티 세트 LE1218099746 롯데온'</li></ul> |
67
+ | 4.0 | <ul><li>'[입생로랑] NEW 베르니 아 레브르 바이닐 크림 416 싸이키델릭 칠리 주식회사 인터파크커머스'</li><li>'페리페라잉크더에어리벨벳 8호 최예쁨템 문스타'</li><li>'맥 파우더 키스 리퀴드 립컬러 5ml 어 리틀 템드 옵션없음 PDValues LLC'</li></ul> |
68
+ | 5.0 | <ul><li>'에뛰드 오 마이 래쉬 쌩얼 카라 7ml 1개 옵션없음 디제이커머스(DJ커머스)'</li><li>'페리페라 잉크 블랙 카라 풀볼륨 컬링 (주)금용주상사'</li><li>'이니스프리 스키니 꼼꼼카라 제로 2호 브라운 옵션없음 맥스베스트'</li></ul> |
69
+ | 2.0 | <ul><li>'웨이크메이크듀이젤글레이즈스틱 12호 플레어듀 듀이젤글레이즈스틱_12호 플레어듀 와우마트'</li><li>'틴톤 꽃립스틱 틴톤 립스틱 퍼플 샹그리아퍼플+가방 주식회사 비투오'</li><li>'키치캐치 치키 컬러 밤 (8 Colors) PLAYFUL 주식회사 링크스'</li></ul> |
70
+ | 12.0 | <ul><li>'메리쏘드 더블 컨투어 스틱 듀얼 코쉐딩 컨투어링 토피 브라운 1개 주식회사 용감한 미녀들'</li><li>'아���글래스 앰비언트 팔레트 9.9g 1021812 옵션없음 배스테인'</li><li>'페리페라 잉크 브이 쉐딩 옵션없음 주식회사 루트'</li></ul> |
71
+ | 0.0 | <ul><li>'[맥](신세계 강남점)스쿼트 플럼핑 글로스 스틱 노바 주식회사 에스에스지닷컴'</li><li>'[로라 메르시에] 립 글라세 35 크림 브릴레 주식회사 인터파크커머스'</li><li>'로라메르시에 립 그레이스 글로스 00 Icy 0.19 Fl Oz 어머니생신선물 옵션없음 남인터내셔널'</li></ul> |
72
+ | 9.0 | <ul><li>'바비브라운 롱웨어 워터프루프 라이너 0.12g(블랙초콜릿) 옵션없음 옐로우로켓'</li><li>'키스미 스무스 리퀴드아이라이너 슈퍼킵 딥블랙 동건상사'</li><li>'컬러그램 음영 창조 라이너 0.5g - 아이라이너 펜슬 극세모 05호 30% 그레이 주식회사 포러스'</li></ul> |
73
+ | 8.0 | <ul><li>'썸블라썸 속눈썹 영양제 블랙 틴팅 투명 마스카라 픽서 펌 연장 케어 눈썹 에센스 10ml [단품] 속눈썹영양제_투명1개 (주)굿메이커스'</li><li>'마이온리 영양제 옵션없음 구본금'</li><li>'나우코스 바이브랩 리바이브 테라피 헤어 브로우 래쉬 세럼 10ml 11203415 옵션없음 그리드'</li></ul> |
74
+ | 3.0 | <ul><li>'맥 텐더토크 립 밤 캔디 랩드 3g 옵션없음 쇼핑사거리'</li><li>'[라부르켓] 립 밤 아몬드/코코넛 14g 화이트_F (주)신세계인터내셔날'</li><li>'맨소래담 립아이스 매직컬러 스트로베리 2g 옵션없음 바틀샵 모정유통'</li></ul> |
75
+ | 11.0 | <ul><li>'바비브라운 롱-웨어 크림 쉐도우 스틱 (인칸데센트) / 1.6g (E96E-49) 옵션없음 (주)신세계사이먼 여주점'</li><li>'바비 브라운 롱웨어 크림 섀도우 스틱 인칸데센트(펄있음) 신세계스포츠'</li><li>'노베브X재유 언더 아이 마스터 05. 크림피치 투이제이'</li></ul> |
76
+ | 6.0 | <ul><li>'지방시 프리즘 리브르 블러쉬 6g N01 무슬린 릴라 옵션없음 헤이워나'</li><li>'누즈 무스 케어 치크 16ml 1021814 옵션없음 굿데이'</li><li>'삐아 라스트 블러쉬 2.5g 08 피넛블러썸(그레이브라운) 1개 옵션없음 원라이브팩토리'</li></ul> |
77
+ | 10.0 | <ul><li>'맥 아이 브로우 스타일러 0.09g 링거링 옵션없음 문화마을'</li><li>'맥 아이 브로우 스타일러 0.9g 1021649 페니 배스테인'</li><li>'OBGE 이지 펜슬 브로우 딥그레이 안나레포츠'</li></ul> |
78
+
79
+ ## Evaluation
80
+
81
+ ### Metrics
82
+ | Label | Accuracy |
83
+ |:--------|:---------|
84
+ | **all** | 0.7903 |
85
+
86
+ ## Uses
87
+
88
+ ### Direct Use for Inference
89
+
90
+ First install the SetFit library:
91
+
92
+ ```bash
93
+ pip install setfit
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+
98
+ ```python
99
+ from setfit import SetFitModel
100
+
101
+ # Download from the 🤗 Hub
102
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bt6_test")
103
+ # Run inference
104
+ preds = model("그랑디오즈 마스카라/랑콤 스머지 프루프 롯데쇼핑(주)")
105
+ ```
106
+
107
+ <!--
108
+ ### Downstream Use
109
+
110
+ *List how someone could finetune this model on their own dataset.*
111
+ -->
112
+
113
+ <!--
114
+ ### Out-of-Scope Use
115
+
116
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
117
+ -->
118
+
119
+ <!--
120
+ ## Bias, Risks and Limitations
121
+
122
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
123
+ -->
124
+
125
+ <!--
126
+ ### Recommendations
127
+
128
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
129
+ -->
130
+
131
+ ## Training Details
132
+
133
+ ### Training Set Metrics
134
+ | Training set | Min | Median | Max |
135
+ |:-------------|:----|:-------|:----|
136
+ | Word count | 4 | 9.3296 | 20 |
137
+
138
+ | Label | Training Sample Count |
139
+ |:------|:----------------------|
140
+ | 0.0 | 16 |
141
+ | 1.0 | 18 |
142
+ | 2.0 | 19 |
143
+ | 3.0 | 24 |
144
+ | 4.0 | 19 |
145
+ | 5.0 | 20 |
146
+ | 6.0 | 21 |
147
+ | 7.0 | 15 |
148
+ | 8.0 | 21 |
149
+ | 9.0 | 22 |
150
+ | 10.0 | 31 |
151
+ | 11.0 | 22 |
152
+ | 12.0 | 19 |
153
+
154
+ ### Training Hyperparameters
155
+ - batch_size: (512, 512)
156
+ - num_epochs: (40, 40)
157
+ - max_steps: -1
158
+ - sampling_strategy: oversampling
159
+ - num_iterations: 50
160
+ - body_learning_rate: (2e-05, 1e-05)
161
+ - head_learning_rate: 0.01
162
+ - loss: CosineSimilarityLoss
163
+ - distance_metric: cosine_distance
164
+ - margin: 0.25
165
+ - end_to_end: False
166
+ - use_amp: False
167
+ - warmup_proportion: 0.1
168
+ - l2_weight: 0.01
169
+ - seed: 42
170
+ - eval_max_steps: -1
171
+ - load_best_model_at_end: False
172
+
173
+ ### Training Results
174
+ | Epoch | Step | Training Loss | Validation Loss |
175
+ |:-------:|:----:|:-------------:|:---------------:|
176
+ | 0.0370 | 1 | 0.4964 | - |
177
+ | 1.8519 | 50 | 0.3283 | - |
178
+ | 3.7037 | 100 | 0.0672 | - |
179
+ | 5.5556 | 150 | 0.015 | - |
180
+ | 7.4074 | 200 | 0.0043 | - |
181
+ | 9.2593 | 250 | 0.0019 | - |
182
+ | 11.1111 | 300 | 0.0004 | - |
183
+ | 12.9630 | 350 | 0.0003 | - |
184
+ | 14.8148 | 400 | 0.0002 | - |
185
+ | 16.6667 | 450 | 0.0002 | - |
186
+ | 18.5185 | 500 | 0.0002 | - |
187
+ | 20.3704 | 550 | 0.0002 | - |
188
+ | 22.2222 | 600 | 0.0001 | - |
189
+ | 24.0741 | 650 | 0.0001 | - |
190
+ | 25.9259 | 700 | 0.0001 | - |
191
+ | 27.7778 | 750 | 0.0001 | - |
192
+ | 29.6296 | 800 | 0.0001 | - |
193
+ | 31.4815 | 850 | 0.0001 | - |
194
+ | 33.3333 | 900 | 0.0001 | - |
195
+ | 35.1852 | 950 | 0.0001 | - |
196
+ | 37.0370 | 1000 | 0.0001 | - |
197
+ | 38.8889 | 1050 | 0.0001 | - |
198
+
199
+ ### Framework Versions
200
+ - Python: 3.10.12
201
+ - SetFit: 1.1.0
202
+ - Sentence Transformers: 3.3.1
203
+ - Transformers: 4.44.2
204
+ - PyTorch: 2.2.0a0+81ea7a4
205
+ - Datasets: 3.2.0
206
+ - Tokenizers: 0.19.1
207
+
208
+ ## Citation
209
+
210
+ ### BibTeX
211
+ ```bibtex
212
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
213
+ doi = {10.48550/ARXIV.2209.11055},
214
+ url = {https://arxiv.org/abs/2209.11055},
215
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
216
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
217
+ title = {Efficient Few-Shot Learning Without Prompts},
218
+ publisher = {arXiv},
219
+ year = {2022},
220
+ copyright = {Creative Commons Attribution 4.0 International}
221
+ }
222
+ ```
223
+
224
+ <!--
225
+ ## Glossary
226
+
227
+ *Clearly define terms in order to be accessible across audiences.*
228
+ -->
229
+
230
+ <!--
231
+ ## Model Card Authors
232
+
233
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
234
+ -->
235
+
236
+ <!--
237
+ ## Model Card Contact
238
+
239
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
240
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bt_test",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa5b9c5eb1afdd47b1a4213b4f172a75c7a91b2230df85f641d042d25e12f3ee
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4520b4987329b5d0010f0b1614ee14c33f199e5ba06f5797a887d0ca55f55674
3
+ size 80895
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff