File size: 8,985 Bytes
33b868c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[PS5] 딥 어스 디스크에디션 콘솔 커버 코발트 블루  오진상사(주)'
- text: '[PS5] 플레이스테이션5 디스크 에디션  오진상사(주)'
- text: PS4 그란투리스모 스포트 한글판 PlaystationHits  조이게임
- text: PS4 아이돌마스터 스탈릿 시즌 일반판 새제품 한글판  제이와이게임타운
- text: '[PS4] 색보이 빅 어드벤처  에이티게임(주)'
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.7771822358346095
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                              |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | <ul><li>'[PS4] NBA 2K24 코비 브라이언트 에디션 특전 바우처 有  오진상사(주)'</li><li>'닌텐도 스위치 둘이서 냥코 대전쟁 한글판  게임매니아'</li><li>'닌텐도 마리오 카트 8 디럭스 + 조이콘 휠 패키지 SWITCH 한글판 마리오카트8 디럭스 (+조이콘핸들 세트)_마리오카트8 (+핸들 2개 원형 네온) 주식회사 쇼핑랩스'</li></ul>    |
| 2     | <ul><li>'[트러스트마스터] T80 Ferrari 488 GTB 에디션  주식회사 투비네트웍스글로벌'</li><li>'트러스트마스터 T300 페라리 Integral 레이싱휠 [PS5, PS4, PC지원]  주식회사 디에스샵(DS SHOP)'</li><li>'레이저코리아 울버린 V2 크로마 Wolverine V2 Chroma 게임 컨트롤러  (주)하이케이넷'</li></ul> |
| 1     | <ul><li>'[노리박스] 오락실 게임기 분리기통(고급DX팩)  (주)에스와이에스리테일'</li><li>'[XBOX]마이크로 소프트 정식발매 X-BOX series X 1TB 새제품  다음텔레콤'</li><li>'노리박스 32인치 스탠드형 강화유리 오락실게임기 오락기 DX팩(3000게임/720P/3~4인지원) (주)노리박스게임연구소'</li></ul>                |
| 0     | <ul><li>'PC 삼국지 14 한글판 (스팀코드발송)  (주) 디지털터치'</li><li>'Wizard with a Gun 스팀 PC 뉴 어카운트 (정지X) / 기존계정 가능 기존 계정 스팀 유통할인'</li><li>'철권7 tekken7 PC/스팀 철권7 (코드48시이내발송)  전한수'</li></ul>                                         |
| 4     | <ul><li>'한국 닌텐도 정품 게임기 스위치 신형 OLED+콘트라 로그콥스+액정강화유리세트 OLED 네온레드블루 색상_OLED본체+뉴슈퍼마리오U디럭스+강화유리 에이지씨'</li><li>'게임&워치 젤다의 전설  주식회사 손오공'</li><li>'닌텐도 스위치 라이트 옐로 동물의 숲 케이스  주식회사 손오공'</li></ul>                              |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.7772 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el3")
# Run inference
preds = model("[PS4] 색보이 빅 어드벤처  에이티게임(주)")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median  | Max |
|:-------------|:----|:--------|:----|
| Word count   | 5   | 10.7325 | 23  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 43                    |
| 1     | 50                    |
| 2     | 50                    |
| 3     | 50                    |
| 4     | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0263  | 1    | 0.496         | -               |
| 1.3158  | 50   | 0.1186        | -               |
| 2.6316  | 100  | 0.0532        | -               |
| 3.9474  | 150  | 0.0398        | -               |
| 5.2632  | 200  | 0.0002        | -               |
| 6.5789  | 250  | 0.0001        | -               |
| 7.8947  | 300  | 0.0001        | -               |
| 9.2105  | 350  | 0.0001        | -               |
| 10.5263 | 400  | 0.0001        | -               |
| 11.8421 | 450  | 0.0001        | -               |
| 13.1579 | 500  | 0.0001        | -               |
| 14.4737 | 550  | 0.0001        | -               |
| 15.7895 | 600  | 0.0           | -               |
| 17.1053 | 650  | 0.0001        | -               |
| 18.4211 | 700  | 0.0001        | -               |
| 19.7368 | 750  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->