File size: 8,985 Bytes
33b868c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[PS5] 딥 어스 디스크에디션 콘솔 커버 코발트 블루 오진상사(주)'
- text: '[PS5] 플레이스테이션5 디스크 에디션 오진상사(주)'
- text: PS4 그란투리스모 스포트 한글판 PlaystationHits 조이게임
- text: PS4 아이돌마스터 스탈릿 시즌 일반판 새제품 한글판 제이와이게임타운
- text: '[PS4] 색보이 빅 어드벤처 에이티게임(주)'
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.7771822358346095
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | <ul><li>'[PS4] NBA 2K24 코비 브라이언트 에디션 특전 바우처 有 오진상사(주)'</li><li>'닌텐도 스위치 둘이서 냥코 대전쟁 한글판 게임매니아'</li><li>'닌텐도 마리오 카트 8 디럭스 + 조이콘 휠 패키지 SWITCH 한글판 마리오카트8 디럭스 (+조이콘핸들 세트)_마리오카트8 (+핸들 2개 원형 네온) 주식회사 쇼핑랩스'</li></ul> |
| 2 | <ul><li>'[트러스트마스터] T80 Ferrari 488 GTB 에디션 주식회사 투비네트웍스글로벌'</li><li>'트러스트마스터 T300 페라리 Integral 레이싱휠 [PS5, PS4, PC지원] 주식회사 디에스샵(DS SHOP)'</li><li>'레이저코리아 울버린 V2 크로마 Wolverine V2 Chroma 게임 컨트롤러 (주)하이케이넷'</li></ul> |
| 1 | <ul><li>'[노리박스] 오락실 게임기 분리기통(고급DX팩) (주)에스와이에스리테일'</li><li>'[XBOX]마이크로 소프트 정식발매 X-BOX series X 1TB 새제품 다음텔레콤'</li><li>'노리박스 32인치 스탠드형 강화유리 오락실게임기 오락기 DX팩(3000게임/720P/3~4인지원) (주)노리박스게임연구소'</li></ul> |
| 0 | <ul><li>'PC 삼국지 14 한글판 (스팀코드발송) (주) 디지털터치'</li><li>'Wizard with a Gun 스팀 PC 뉴 어카운트 (정지X) / 기존계정 가능 기존 계정 스팀 유통할인'</li><li>'철권7 tekken7 PC/스팀 철권7 (코드48시이내발송) 전한수'</li></ul> |
| 4 | <ul><li>'한국 닌텐도 정품 게임기 스위치 신형 OLED+콘트라 로그콥스+액정강화유리세트 OLED 네온레드블루 색상_OLED본체+뉴슈퍼마리오U디럭스+강화유리 에이지씨'</li><li>'게임&워치 젤다의 전설 주식회사 손오공'</li><li>'닌텐도 스위치 라이트 옐로 동물의 숲 케이스 주식회사 손오공'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.7772 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el3")
# Run inference
preds = model("[PS4] 색보이 빅 어드벤처 에이티게임(주)")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:--------|:----|
| Word count | 5 | 10.7325 | 23 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 43 |
| 1 | 50 |
| 2 | 50 |
| 3 | 50 |
| 4 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0263 | 1 | 0.496 | - |
| 1.3158 | 50 | 0.1186 | - |
| 2.6316 | 100 | 0.0532 | - |
| 3.9474 | 150 | 0.0398 | - |
| 5.2632 | 200 | 0.0002 | - |
| 6.5789 | 250 | 0.0001 | - |
| 7.8947 | 300 | 0.0001 | - |
| 9.2105 | 350 | 0.0001 | - |
| 10.5263 | 400 | 0.0001 | - |
| 11.8421 | 450 | 0.0001 | - |
| 13.1579 | 500 | 0.0001 | - |
| 14.4737 | 550 | 0.0001 | - |
| 15.7895 | 600 | 0.0 | - |
| 17.1053 | 650 | 0.0001 | - |
| 18.4211 | 700 | 0.0001 | - |
| 19.7368 | 750 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |