|
--- |
|
base_model: mini1013/master_domain |
|
library_name: setfit |
|
metrics: |
|
- metric |
|
pipeline_tag: text-classification |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: '[바다원] 깨끗한 돌김자반볶음 오리지널 40g x 5봉 (주)씨제이이엔엠' |
|
- text: 쭈꾸미사령부 매운맛 300g 3개 불타는 매운맛 원츄쟈챠 |
|
- text: 냉동 새우 튀김 300g 6미 10미 대용량 업소용 빵가루 왕새우튀김 코코넛쉬림프 360g (30미) 주식회사 더꽃게 |
|
- text: 잇투헤븐 팔당 불 오징어 매운 오징어 볶음 400g 쭈꾸미도사 쭈꾸미볶음 01.팔당불오징어400g 1팩 (주)잇투헤븐 |
|
- text: CJ 명가김 파래김 4g 16입 트릴리어네어스 |
|
inference: true |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: metric |
|
value: 0.8689361702127659 |
|
name: Metric |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 6 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 2.0 | <ul><li>'훈제연어(통) 약1.1kg 냉동연어 필렛 슬라이스 칠레산 HACCP 국내가공 화이트베어 화이트베어 훈제연어슬라이스 ±1.3kg 주식회사 셀피'</li><li>'안동간고등어 80g 10팩(5마리) 동의합니다_80g 10팩(5마리) 델리아마켓'</li><li>'제주 국내산 손질 고등어 2KG 한팩150g이상 11-12팩 3KG(16-19팩) 효명가'</li></ul> | |
|
| 1.0 | <ul><li>'동원F&B 양반 김치맛 김부각 50g 1개 동원F&B 양반 김치맛 김부각 50g 1개 다팔아스토어'</li><li>'오뚜기 옛날 자른미역 50G 대성상사'</li><li>'환길산업 섬마을 해초샐러드 냉동 해초무침 2kg 제루통상'</li></ul> | |
|
| 0.0 | <ul><li>'Fish Tree 국물용멸치 1.3kg 케이원'</li><li>'Fish Tree 국물용 볶음용 멸치 1.3kg 1kg 뼈건강 깊은맛 육수 대멸치 좋은식감 국물용 멸치 1.3kg 유라너스'</li><li>'Fish Tree 국물용 멸치 1.3kg 이숍'</li></ul> | |
|
| 3.0 | <ul><li>'랭킹수산 장어구이 혼합 140gx20팩(데리야끼10매콤10) -인증 제이원무역'</li><li>'올반 대왕 오징어튀김 400g 나라유통'</li><li>'바다愛한끼 이원일 연평도 꽃게 해물탕 760g 소스포함 2팩 (주)티알엔'</li></ul> | |
|
| 5.0 | <ul><li>'날치알 동림 담홍 레드 800G [800G][동림]날치알(골드)(팩) 주식회사 명품씨푸드'</li><li>'날치알 동림 담홍 레드 800G [800G][동림]날치알(레드)(팩) 주식회사 명품씨푸드'</li><li>'날치알 동림 담홍 레드 800G [800gG[코아]날치알[골드] 주식회사 명품씨푸드'</li></ul> | |
|
| 4.0 | <ul><li>'명인오가네 연어장 250g 명인오가네몰'</li><li>'[나브연] 수제 간장 연어장 750g 덜짜게 주희종'</li><li>'[나브연] 수제 간장 연어장 500g 보통 주희종'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Metric | |
|
|:--------|:-------| |
|
| **all** | 0.8689 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_fd11") |
|
# Run inference |
|
preds = model("CJ 명가김 파래김 4g 16입 트릴리어네어스") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 3 | 9.1164 | 23 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 50 | |
|
| 1.0 | 50 | |
|
| 2.0 | 50 | |
|
| 3.0 | 50 | |
|
| 4.0 | 50 | |
|
| 5.0 | 25 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (512, 512) |
|
- num_epochs: (20, 20) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 40 |
|
- body_learning_rate: (2e-05, 2e-05) |
|
- head_learning_rate: 2e-05 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0233 | 1 | 0.4609 | - | |
|
| 1.1628 | 50 | 0.2116 | - | |
|
| 2.3256 | 100 | 0.0876 | - | |
|
| 3.4884 | 150 | 0.0442 | - | |
|
| 4.6512 | 200 | 0.0254 | - | |
|
| 5.8140 | 250 | 0.0133 | - | |
|
| 6.9767 | 300 | 0.0252 | - | |
|
| 8.1395 | 350 | 0.0176 | - | |
|
| 9.3023 | 400 | 0.0116 | - | |
|
| 10.4651 | 450 | 0.004 | - | |
|
| 11.6279 | 500 | 0.0231 | - | |
|
| 12.7907 | 550 | 0.0023 | - | |
|
| 13.9535 | 600 | 0.0017 | - | |
|
| 15.1163 | 650 | 0.0002 | - | |
|
| 16.2791 | 700 | 0.0001 | - | |
|
| 17.4419 | 750 | 0.0001 | - | |
|
| 18.6047 | 800 | 0.0001 | - | |
|
| 19.7674 | 850 | 0.0001 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0.dev0 |
|
- Sentence Transformers: 3.1.1 |
|
- Transformers: 4.46.1 |
|
- PyTorch: 2.4.0+cu121 |
|
- Datasets: 2.20.0 |
|
- Tokenizers: 0.20.0 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |