SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
3.0
  • '찹쌀호떡믹스 400g 5개 오브젝티브'
  • '신진 찹쌀호떡가루 2.5Kg 호떡믹스 퍼스트'
  • '찹쌀호떡믹스 400g 10개 묶음배송가능 옵션9.\xa0오븐용깨찰빵믹스 500g EY 인터내셔널'
0.0
  • '브레드가든 바닐라에센스 59ml 주식회사 몬즈컴퍼니'
  • '선인 냉동레몬제스트 500g 레몬껍질 선인 냉동레몬제스트 500g 레몬껍질 아이은하'
  • '샤프 인스턴트 이스트 골드 500g 샤프 이스트 골드 500g 주식회사 맘쿠킹'
2.0
  • '곰표 와플믹스 1kg x 4팩 코스트코나'
  • '동원비셰프 스위트사워믹스1kg 엠디에스마케팅 주식회사'
  • 'CJ 백설 붕어빵믹스 10kg [맛있는] [좋아하는]간편 로이스'
1.0
  • '오뚜기 베이킹소다 400g 지윤 주식회사'
  • '밥스레드밀 파우더 397g 베이킹 글로벌피스'
  • 'Anthony s 유기농 요리 등급 코코아 파우더 1 lb 프로마스터'

Evaluation

Metrics

Label Metric
all 0.8175

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd17")
# Run inference
preds = model("행복한 쌀잉어빵 반죽 5kg 팥앙금 3kg 행복유통")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 9.2 22
Label Training Sample Count
0.0 50
1.0 50
2.0 50
3.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0312 1 0.4064 -
1.5625 50 0.1639 -
3.125 100 0.003 -
4.6875 150 0.0003 -
6.25 200 0.0001 -
7.8125 250 0.0001 -
9.375 300 0.0001 -
10.9375 350 0.0 -
12.5 400 0.0 -
14.0625 450 0.0 -
15.625 500 0.0 -
17.1875 550 0.0 -
18.75 600 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
457
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mini1013/master_cate_fd17

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results