SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '동원 면발의신 얼큰칼국수268g x 4 코스트코 650449 상품 상세페이지 참조_268g x 4 탑럭셔리3'
  • '[청정원] 두부로만든 콩담백면 택1(옵션선택) 1.비빔 380g(2인) 아센드라도'
  • '라리 펜네 500g (유) 싱싱채소 그린팜'
0.0
  • '팔도 비빔면딸기 135g (5개입) x 1팩 주식회사 디씽컴퍼니'
  • '오뚜기 열 라면 120g 5개 서신빠마켓'
  • '농심 오징어짬뽕컵 67g x 6개 으쓱몰'

Evaluation

Metrics

Label Metric
all 0.9464

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd7")
# Run inference
preds = model("앙카라 스파게티면 5kg  지윤 주식회사")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 8.94 20
Label Training Sample Count
0.0 50
1.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0625 1 0.394 -
3.125 50 0.0229 -
6.25 100 0.0002 -
9.375 150 0.0 -
12.5 200 0.0 -
15.625 250 0.0 -
18.75 300 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
359
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mini1013/master_cate_fd7

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results