SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
4.0
  • '토게 속성 인형 이누마키 솜인형 솜뭉치 가구/인테리어>솜류>쿠션솜'
  • '모던하우스 호텔 다운필 쿠션솜 50x50 FP4119002 가구/인테리어>솜류>쿠션솜'
  • '텐바이텐 푹신한 국산 쿠션솜 지퍼형 빵빵한 구름솜 50x50 가구/인테리어>솜류>쿠션솜'
2.0
  • '목화 솜 요 솜이불 겨울 패드 토퍼 이불 바닥 목화솜 가구/인테리어>솜류>요솜/매트솜>목화요솜'
  • '이브자리 뉴 레이언 요솜 S D Q K 가구/인테리어>솜류>요솜/매트솜>견면요솜'
  • '생일 축하 케이크 토퍼 글리터 발레 걸 댄스 발레리나 여아용 파티 장식 댄서 토퍼 골든 132066 가구/인테리어>솜류>요솜/매트솜>견면요솜'
3.0
  • '폭스베딩 사계절용 모달 헝가리 구스다운 이불 솜털93프로 - 킹600g 가구/인테리어>솜류>이불솜>거위털/오리털이불솜'
  • '슈프렐 95도 사계절 이불솜 가구/인테리어>솜류>이불솜>일반이불솜'
  • '북유럽풍 램스울 양모 겨울이불 순면 이불세트 침구 극세사 두꺼운 가구/인테리어>솜류>이불솜>양모이불솜'
0.0
  • '베이직 방석솜 가구/인테리어>솜류>방석솜'
  • '코지톡 사용감의 원형 솜방석 4개 가구/인테리어>솜류>방석솜'
  • '포근한 하라홈 국내산 구름 새솜 방석솜 50x50 가구/인테리어>솜류>방석솜'
1.0
  • '힐튼 호텔 퀼팅베개 계절베개 가구/인테리어>솜류>베개솜/속통>거위털/오리털베개솜'
  • '바운티풀 호텔베개 폴란드 구스다운 90 수피마면 삼중구조 구스베개 600g 가구/인테리어>솜류>베개솜/속통>거위털/오리털베개솜'
  • '폭스베딩 프라우덴 헝가리산 구스 베개솜 솜털90 60수 베개커버선물 EH2TXX00106 가구/인테리어>솜류>베개솜/속통>거위털/오리털베개솜'

Evaluation

Metrics

Label Accuracy
all 1.0

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fi4")
# Run inference
preds = model("2장 지퍼형 항균베개솜 4060 애프터식스 가구/인테리어>솜류>베개솜/속통>일반베개솜")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 2 8.6171 19
Label Training Sample Count
0.0 70
1.0 70
2.0 70
3.0 70
4.0 70

Training Hyperparameters

  • batch_size: (256, 256)
  • num_epochs: (30, 30)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 50
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • l2_weight: 0.01
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0145 1 0.4828 -
0.7246 50 0.4997 -
1.4493 100 0.2078 -
2.1739 150 0.0067 -
2.8986 200 0.0001 -
3.6232 250 0.0 -
4.3478 300 0.0 -
5.0725 350 0.0 -
5.7971 400 0.0 -
6.5217 450 0.0 -
7.2464 500 0.0 -
7.9710 550 0.0 -
8.6957 600 0.0 -
9.4203 650 0.0 -
10.1449 700 0.0 -
10.8696 750 0.0 -
11.5942 800 0.0 -
12.3188 850 0.0 -
13.0435 900 0.0 -
13.7681 950 0.0 -
14.4928 1000 0.0 -
15.2174 1050 0.0 -
15.9420 1100 0.0 -
16.6667 1150 0.0 -
17.3913 1200 0.0 -
18.1159 1250 0.0 -
18.8406 1300 0.0 -
19.5652 1350 0.0 -
20.2899 1400 0.0 -
21.0145 1450 0.0 -
21.7391 1500 0.0 -
22.4638 1550 0.0 -
23.1884 1600 0.0 -
23.9130 1650 0.0 -
24.6377 1700 0.0 -
25.3623 1750 0.0 -
26.0870 1800 0.0 -
26.8116 1850 0.0 -
27.5362 1900 0.0 -
28.2609 1950 0.0 -
28.9855 2000 0.0 -
29.7101 2050 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0
  • Sentence Transformers: 3.3.1
  • Transformers: 4.44.2
  • PyTorch: 2.2.0a0+81ea7a4
  • Datasets: 3.2.0
  • Tokenizers: 0.19.1

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
798
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mini1013/master_cate_fi4

Base model

klue/roberta-base
Finetuned
(213)
this model

Evaluation results