SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '매직솔트 천목도자기 좌훈기 매직솔트'
  • '냄새제거 해충기피 좌훈 강화약쑥 태우는쑥 2봉 이즈데어'
  • '가정용 원목 좌훈기 족욕기 혈액순환 찜질 좌욕 훈증 70 높이 W포트 찜통 E 아르랩'
0.0
  • '접이식 가정용 좌욕기 임산부 치질 온욕 폴딩 대야 수동 비데 접이식 가정용좌욕기 그레이 데일리마켓'
  • 'OK 소프트 좌욕대야 좌욕기 임산부 가정용 좌욕 1_핑크 메디칼유'
  • '닥터프리 버블 가정용 좌욕기 쑥 치질 임산부 대야 A.고급 천연 약쑥 30포 주식회사 다니고'

Evaluation

Metrics

Label Metric
all 0.9881

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh24")
# Run inference
preds = model("반신욕 가운 좌훈 사우나 목욕탕 찜질 땀복 좌욕 치마 5. 블루 커버 컬러몰")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 10.8 22
Label Training Sample Count
0.0 50
1.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0625 1 0.4245 -
3.125 50 0.0003 -
6.25 100 0.0 -
9.375 150 0.0 -
12.5 200 0.0 -
15.625 250 0.0 -
18.75 300 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
107
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_lh24

Base model

klue/roberta-base
Finetuned
(136)
this model

Evaluation results