File size: 8,636 Bytes
f12f56c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 선인장 소프트렌즈 렌즈세척기 수동 셀프 세척 필수선택_핑크 은총에벤에셀
- text: '[멕리듬]메구리즘/멕리듬 아이마스크 수면안대 12입 5.잘 익은 유자향 12P 롯데아이몰'
- text: 교체용 케이스 소프트 집게 거울 콘텍트 세트 블루 슈가랜드
- text: 보아르 아이워시 초음파 안경 렌즈세척기 눈에보이지 않는 각종 세균 99.7% 완벽세척 화이트 U0001 오아 주식회사
- text: 안대 야옹이 찜질 2 눈찜질 여행 수면 캐릭터 블랙 엠포엘
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.9615384615384616
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                               |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3.0   | <ul><li>'굿나잇 온열안대 수면안대 눈찜질 눈찜질기 눈찜질팩 MinSellAmount 오아월드'</li><li>'[대구백화점] [누리아이]안구건조증 치료의료기기 누리아이 5800 (위생용시트지 1박스 ) 누리아이 5800 대구백화점'</li><li>'동국제약 굿잠 스팀안대 3박스 수면 온열안대 (무향/카모마일향 선택) 1_무향 3박스_AA 동국제약_본사직영'</li></ul> |
| 0.0   | <ul><li>'렌즈집게 렌즈 넣는 집게 끼는 도구 흡착봉 소프트 렌즈집게(핑크) 썬더딜'</li><li>'메루루 원데이 소프트렌즈 집게 착용 분리 기구 1세트 MinSellAmount 체리팝스'</li><li>'소프트 통 케이스 빼는도구 접시 용품 흡착봉 뽁뽁이 보관통 하드 렌즈통(블루) 기쁘다희샵'</li></ul>                                    |
| 2.0   | <ul><li>'초음파 변환장치 진동기 식기 세척기 진동판 생성기 초음파발생기 변환기 D. 20-40K1800W (비고 주파수) 메타몰'</li><li>'새한 초음파세정기 SH-1050 / 28kHz / 1.2L / 신제품  주식회사 전자코리아'</li><li>'새한 디지털 초음파 세척기 세정기 SH-1050D 안경 렌즈 귀금속 세척기  서진하이텍'</li></ul>         |
| 1.0   | <ul><li>'휴먼바이오 식염수 중외제약 셀라인 식염수 370ml 20개, 드림 하드 렌즈용 생리 식염수 가이아코리아 휴먼바이오 식염수 500ml 20개 가이아코리아(Gaia Korea)'</li><li>'리뉴 센서티브 355ml  씨채널안경체인태백점'</li><li>'바슈롬 바이오트루 300ml  쏜 상점'</li></ul>                               |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.9615 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh6")
# Run inference
preds = model("교체용 케이스 소프트 집게 거울 콘텍트 세트 블루 슈가랜드")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 9.705  | 19  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 50                    |
| 3.0   | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0312  | 1    | 0.4002        | -               |
| 1.5625  | 50   | 0.064         | -               |
| 3.125   | 100  | 0.0021        | -               |
| 4.6875  | 150  | 0.0004        | -               |
| 6.25    | 200  | 0.0001        | -               |
| 7.8125  | 250  | 0.0001        | -               |
| 9.375   | 300  | 0.0           | -               |
| 10.9375 | 350  | 0.0           | -               |
| 12.5    | 400  | 0.0           | -               |
| 14.0625 | 450  | 0.0           | -               |
| 15.625  | 500  | 0.0           | -               |
| 17.1875 | 550  | 0.0           | -               |
| 18.75   | 600  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->