|
--- |
|
tags: |
|
- setfit |
|
- sentence-transformers |
|
- text-classification |
|
- generated_from_setfit_trainer |
|
widget: |
|
- text: 집업 여자 요가복 상의 필라테스복 긴팔 운동복 상의 스포츠/레저>요가/필라테스>요가복>상의 |
|
- text: 요가 홈트 스트랩 벨트 필라테스 명상 레슨 플라잉 02 3세대 업그레이드 쿠션 스포츠/레저>요가/필라테스>기타요가용품 |
|
- text: 스파인코렉터 홈트 가정용 운동 교정 허리 마사지기 스포츠/레저>요가/필라테스>필라테스 |
|
- text: KKJN 남자반팔상의요가복 NT1105 스포츠/레저>요가/필라테스>요가복>상의 |
|
- text: 필라테스 척추 스트레칭 스파인코렉터 허리 홈트 요가 스포츠/레저>요가/필라테스>필라테스 |
|
metrics: |
|
- accuracy |
|
pipeline_tag: text-classification |
|
library_name: setfit |
|
inference: true |
|
base_model: mini1013/master_domain |
|
model-index: |
|
- name: SetFit with mini1013/master_domain |
|
results: |
|
- task: |
|
type: text-classification |
|
name: Text Classification |
|
dataset: |
|
name: Unknown |
|
type: unknown |
|
split: test |
|
metrics: |
|
- type: accuracy |
|
value: 1.0 |
|
name: Accuracy |
|
--- |
|
|
|
# SetFit with mini1013/master_domain |
|
|
|
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. |
|
|
|
The model has been trained using an efficient few-shot learning technique that involves: |
|
|
|
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning. |
|
2. Training a classification head with features from the fine-tuned Sentence Transformer. |
|
|
|
## Model Details |
|
|
|
### Model Description |
|
- **Model Type:** SetFit |
|
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) |
|
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance |
|
- **Maximum Sequence Length:** 512 tokens |
|
- **Number of Classes:** 5 classes |
|
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) --> |
|
<!-- - **Language:** Unknown --> |
|
<!-- - **License:** Unknown --> |
|
|
|
### Model Sources |
|
|
|
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit) |
|
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055) |
|
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit) |
|
|
|
### Model Labels |
|
| Label | Examples | |
|
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| |
|
| 4.0 | <ul><li>'기구 필라테스 체어 스프링 스트레칭 홈트 스텝체어 스포츠/레저>요가/필라테스>필라테스'</li><li>'체어 필라테스 기구 대형 장비 코어 운동 전신 홈짐 스포츠/레저>요가/필라테스>필라테스'</li><li>'집에서하는필라테스 레더바렐 레더배럴 원목 스트레칭 스포츠/레저>요가/필라테스>필라테스'</li></ul> | |
|
| 2.0 | <ul><li>'밸런시스 NEW NR1 센터라인 요가매트 6.3mm 스포츠/레저>요가/필라테스>요가매트'</li><li>'아디다스 피트니스 매트 ADYG-10010 스포츠/레저>요가/필라테스>요가매트'</li><li>'듀잇 매트 + 스트랩 SET 스포츠/레저>요가/필라테스>요가매트'</li></ul> | |
|
| 3.0 | <ul><li>'언더아머 커리 플리스 스웨트 팬츠 1374299001 스포츠/레저>요가/필라테스>요가복>하의'</li><li>'로라벨 무르 니트 필라테스복 여성 요가복 필라테스 요가 상의 옷 커버업 운동복 스포츠/레저>요가/필라테스>요가복>상의'</li><li>'데비웨어 여성 요가복 블랙 필라테스 서포트티 반팔티 DEVI-T0058 스포츠/레저>요가/필라테스>요가복>상의'</li></ul> | |
|
| 0.0 | <ul><li>'그라데이션 플라잉 요가 해먹 고탄성 스포츠/레저>요가/필라테스>기타요가용품'</li><li>'자세 폴 요가 스트랩 - 스틱 벨트 스포츠/레저>요가/필라테스>기타요가용품'</li><li>'고정 공중 해먹 플라잉요가 요가 로프 천 스튜디오 스트레칭 필라테스 홈트 스포츠/레저>요가/필라테스>기타요가용품'</li></ul> | |
|
| 1.0 | <ul><li>'요가 스트레칭 도구 요가링 필라테스링 허벅지 괄약근 다리 케겔운동 남성용 하체 힙업 항문 원형 팔 스포츠/레저>요가/필라테스>요가링/필라테스링'</li><li>'홈트 종아리운동 근육풀기용 혈액순환 하드 요가링 마사지 어깨결림 필라테스 스트레칭 스포츠/레저>요가/필라테스>요가링/필라테스링'</li><li>'홈트 운동 스트레칭 헬스 필라테스링 스포츠/레저>요가/필라테스>요가링/필라테스링'</li></ul> | |
|
|
|
## Evaluation |
|
|
|
### Metrics |
|
| Label | Accuracy | |
|
|:--------|:---------| |
|
| **all** | 1.0 | |
|
|
|
## Uses |
|
|
|
### Direct Use for Inference |
|
|
|
First install the SetFit library: |
|
|
|
```bash |
|
pip install setfit |
|
``` |
|
|
|
Then you can load this model and run inference. |
|
|
|
```python |
|
from setfit import SetFitModel |
|
|
|
# Download from the 🤗 Hub |
|
model = SetFitModel.from_pretrained("mini1013/master_cate_sl24") |
|
# Run inference |
|
preds = model("KKJN 남자반팔상의요가복 NT1105 스포츠/레저>요가/필라테스>요가복>상의") |
|
``` |
|
|
|
<!-- |
|
### Downstream Use |
|
|
|
*List how someone could finetune this model on their own dataset.* |
|
--> |
|
|
|
<!-- |
|
### Out-of-Scope Use |
|
|
|
*List how the model may foreseeably be misused and address what users ought not to do with the model.* |
|
--> |
|
|
|
<!-- |
|
## Bias, Risks and Limitations |
|
|
|
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.* |
|
--> |
|
|
|
<!-- |
|
### Recommendations |
|
|
|
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.* |
|
--> |
|
|
|
## Training Details |
|
|
|
### Training Set Metrics |
|
| Training set | Min | Median | Max | |
|
|:-------------|:----|:-------|:----| |
|
| Word count | 3 | 8.2029 | 17 | |
|
|
|
| Label | Training Sample Count | |
|
|:------|:----------------------| |
|
| 0.0 | 70 | |
|
| 1.0 | 70 | |
|
| 2.0 | 70 | |
|
| 3.0 | 70 | |
|
| 4.0 | 70 | |
|
|
|
### Training Hyperparameters |
|
- batch_size: (256, 256) |
|
- num_epochs: (30, 30) |
|
- max_steps: -1 |
|
- sampling_strategy: oversampling |
|
- num_iterations: 50 |
|
- body_learning_rate: (2e-05, 1e-05) |
|
- head_learning_rate: 0.01 |
|
- loss: CosineSimilarityLoss |
|
- distance_metric: cosine_distance |
|
- margin: 0.25 |
|
- end_to_end: False |
|
- use_amp: False |
|
- warmup_proportion: 0.1 |
|
- l2_weight: 0.01 |
|
- seed: 42 |
|
- eval_max_steps: -1 |
|
- load_best_model_at_end: False |
|
|
|
### Training Results |
|
| Epoch | Step | Training Loss | Validation Loss | |
|
|:-------:|:----:|:-------------:|:---------------:| |
|
| 0.0145 | 1 | 0.4827 | - | |
|
| 0.7246 | 50 | 0.4432 | - | |
|
| 1.4493 | 100 | 0.0881 | - | |
|
| 2.1739 | 150 | 0.0004 | - | |
|
| 2.8986 | 200 | 0.0 | - | |
|
| 3.6232 | 250 | 0.0 | - | |
|
| 4.3478 | 300 | 0.0 | - | |
|
| 5.0725 | 350 | 0.0 | - | |
|
| 5.7971 | 400 | 0.0 | - | |
|
| 6.5217 | 450 | 0.0 | - | |
|
| 7.2464 | 500 | 0.0 | - | |
|
| 7.9710 | 550 | 0.0 | - | |
|
| 8.6957 | 600 | 0.0 | - | |
|
| 9.4203 | 650 | 0.0 | - | |
|
| 10.1449 | 700 | 0.0 | - | |
|
| 10.8696 | 750 | 0.0 | - | |
|
| 11.5942 | 800 | 0.0 | - | |
|
| 12.3188 | 850 | 0.0 | - | |
|
| 13.0435 | 900 | 0.0 | - | |
|
| 13.7681 | 950 | 0.0 | - | |
|
| 14.4928 | 1000 | 0.0 | - | |
|
| 15.2174 | 1050 | 0.0 | - | |
|
| 15.9420 | 1100 | 0.0 | - | |
|
| 16.6667 | 1150 | 0.0 | - | |
|
| 17.3913 | 1200 | 0.0 | - | |
|
| 18.1159 | 1250 | 0.0 | - | |
|
| 18.8406 | 1300 | 0.0 | - | |
|
| 19.5652 | 1350 | 0.0 | - | |
|
| 20.2899 | 1400 | 0.0 | - | |
|
| 21.0145 | 1450 | 0.0 | - | |
|
| 21.7391 | 1500 | 0.0 | - | |
|
| 22.4638 | 1550 | 0.0 | - | |
|
| 23.1884 | 1600 | 0.0 | - | |
|
| 23.9130 | 1650 | 0.0 | - | |
|
| 24.6377 | 1700 | 0.0 | - | |
|
| 25.3623 | 1750 | 0.0 | - | |
|
| 26.0870 | 1800 | 0.0 | - | |
|
| 26.8116 | 1850 | 0.0 | - | |
|
| 27.5362 | 1900 | 0.0 | - | |
|
| 28.2609 | 1950 | 0.0 | - | |
|
| 28.9855 | 2000 | 0.0 | - | |
|
| 29.7101 | 2050 | 0.0 | - | |
|
|
|
### Framework Versions |
|
- Python: 3.10.12 |
|
- SetFit: 1.1.0 |
|
- Sentence Transformers: 3.3.1 |
|
- Transformers: 4.44.2 |
|
- PyTorch: 2.2.0a0+81ea7a4 |
|
- Datasets: 3.2.0 |
|
- Tokenizers: 0.19.1 |
|
|
|
## Citation |
|
|
|
### BibTeX |
|
```bibtex |
|
@article{https://doi.org/10.48550/arxiv.2209.11055, |
|
doi = {10.48550/ARXIV.2209.11055}, |
|
url = {https://arxiv.org/abs/2209.11055}, |
|
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren}, |
|
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences}, |
|
title = {Efficient Few-Shot Learning Without Prompts}, |
|
publisher = {arXiv}, |
|
year = {2022}, |
|
copyright = {Creative Commons Attribution 4.0 International} |
|
} |
|
``` |
|
|
|
<!-- |
|
## Glossary |
|
|
|
*Clearly define terms in order to be accessible across audiences.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Authors |
|
|
|
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.* |
|
--> |
|
|
|
<!-- |
|
## Model Card Contact |
|
|
|
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.* |
|
--> |