File size: 14,471 Bytes
0ad8039
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
---
base_model: klue/roberta-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 밀크바오밥 오리지널 샴푸 베이비파우더 1L 09_트리트먼트 화이트머스크 1000ml (#M)화장품/미용>헤어케어>샴푸 AD > Naverstore
    > 화장품/미용 > 헤어케어 > 샴푸 > 약산성샴푸
- text: 무코타염색제 7박스+3박스+정품 트리트먼트 50g 1.카키브라운 (#M)바디/헤어>바디케어>바디케어세트 Gmarket > 뷰티 > 바디/헤어
    > 바디케어 > 바디케어세트
- text: 1+1세트~(컨센+릴렉스마스크100ml) 에스테티카 데미지 케어 컨센트레이트 120ml (열활성 열보호 에센스) 정품 + 릴렉스마스크100ml
    1 (#M)쿠팡 홈>싱글라이프>샤워/세안>헤어에센스 Coupang > 뷰티 > 헤어 > 헤어에센스/오일 > 헤어에센스
- text: 헤드스파7 트리트먼트  프리미엄 210ml + 210ml MinSellAmount (#M)바디/헤어>헤어케어>헤어트리트먼트 Gmarket
    > 뷰티 > 바디/헤어 > 헤어케어 > 헤어트리트먼트
- text: 헤어플러스 실크 코팅 트리트먼트 50ml 4 실크 코팅 트리트먼트 50ml 4 위메프 > 생활·주방·반려동물 > 바디/헤어 > 샴푸/린스/헤어케어
    > 트리트먼트;위메프 > 생활·주방·반려동물 > 바디/헤어 > 샴푸/린스/헤어케어;위메프 > 뷰티 > 바디/헤어 > 샴푸/린스/헤어케어 >
    샴푸/린스;(#M)위메프 > 생활·주방용품 > 바디/헤어 > 샴푸/린스/헤어케어 > 트리트먼트 위메프 > 뷰티 > 바디/헤어 > 샴푸/린스/헤어케어
    > 트리트먼트
inference: true
model-index:
- name: SetFit with klue/roberta-base
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.8206115779645191
      name: Accuracy
---

# SetFit with klue/roberta-base

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 2 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1     | <ul><li>'로레알파리 토탈리페어5 트리트먼트 헤어팩 170ml × 1개 LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 트리트먼트/헤어팩 LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 트리트먼트/헤어팩'</li><li>'아모스 녹차실감  인텐시브 팩 250ml 녹차실감 인텐시브팩250g 홈>전체상품;(#M)홈>녹차실감 Naverstore > 화장품/미용 > 헤어케어 > 헤어팩'</li><li>'프리미엄 헤어클리닉 헤어팩 258ml 베이비파우더 LotteOn > 뷰티 > 헤어케어 > 헤어팩 LotteOn > 뷰티 > 헤어/바디 > 헤어케어 > 트리트먼트/헤어팩'</li></ul>                                                                                                                   |
| 0     | <ul><li>'퓨어시카 트리트먼트 베이비파우더향 1000ml 1개 MinSellAmount 스마일배송 홈>뷰티>바디케어>바디워시;스마일배송 홈>;(#M)스마일배송 홈>뷰티>헤어케어/스타일링>트리트먼트/팩 Gmarket > 뷰티 > 바디/헤어 > 바디케어 > 바디클렌저'</li><li>'1+1 살림백서 탈모 샴푸 엑티브B7 맥주효모 앤 비오틴 1000ml 남자 여자 바이오틴 4)오푼티아 트리트먼트 유칼립투스 1L (#M)화장품/미용>헤어케어>탈모케어 AD > Naverstore > 화장품/미용 > 가을뷰티 > 각질관리템 > 탈모샴푸'</li><li>'1+1 살림백서 오푼티아 퍼퓸 샴푸 500ml 약산성 비듬 지성 두피 볼륨 유칼립투스향 13.유칼립투스 트리트먼트 1+1 500ml (#M)화장품/미용>헤어케어>샴푸 AD > Naverstore > 화장품/미용 > 머스크 > 샴푸'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.8206   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt13_9")
# Run inference
preds = model("무코타염색제 7박스+3박스+정품 트리트먼트 50g 1.카키브라운 (#M)바디/헤어>바디케어>바디케어세트 Gmarket > 뷰티 > 바디/헤어 > 바디케어 > 바디케어세트")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 14  | 23.76  | 98  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 50                    |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0064  | 1    | 0.4326        | -               |
| 0.3185  | 50   | 0.3579        | -               |
| 0.6369  | 100  | 0.2616        | -               |
| 0.9554  | 150  | 0.0326        | -               |
| 1.2739  | 200  | 0.0           | -               |
| 1.5924  | 250  | 0.0           | -               |
| 1.9108  | 300  | 0.0           | -               |
| 2.2293  | 350  | 0.0           | -               |
| 2.5478  | 400  | 0.0           | -               |
| 2.8662  | 450  | 0.0           | -               |
| 3.1847  | 500  | 0.0           | -               |
| 3.5032  | 550  | 0.0           | -               |
| 3.8217  | 600  | 0.0           | -               |
| 4.1401  | 650  | 0.0           | -               |
| 4.4586  | 700  | 0.0           | -               |
| 4.7771  | 750  | 0.0           | -               |
| 5.0955  | 800  | 0.0           | -               |
| 5.4140  | 850  | 0.0           | -               |
| 5.7325  | 900  | 0.0           | -               |
| 6.0510  | 950  | 0.0           | -               |
| 6.3694  | 1000 | 0.0           | -               |
| 6.6879  | 1050 | 0.0           | -               |
| 7.0064  | 1100 | 0.0           | -               |
| 7.3248  | 1150 | 0.0           | -               |
| 7.6433  | 1200 | 0.0           | -               |
| 7.9618  | 1250 | 0.0           | -               |
| 8.2803  | 1300 | 0.0           | -               |
| 8.5987  | 1350 | 0.0           | -               |
| 8.9172  | 1400 | 0.0           | -               |
| 9.2357  | 1450 | 0.0           | -               |
| 9.5541  | 1500 | 0.0           | -               |
| 9.8726  | 1550 | 0.0           | -               |
| 10.1911 | 1600 | 0.0           | -               |
| 10.5096 | 1650 | 0.0           | -               |
| 10.8280 | 1700 | 0.0           | -               |
| 11.1465 | 1750 | 0.0           | -               |
| 11.4650 | 1800 | 0.0           | -               |
| 11.7834 | 1850 | 0.0           | -               |
| 12.1019 | 1900 | 0.0           | -               |
| 12.4204 | 1950 | 0.0           | -               |
| 12.7389 | 2000 | 0.0           | -               |
| 13.0573 | 2050 | 0.0           | -               |
| 13.3758 | 2100 | 0.0           | -               |
| 13.6943 | 2150 | 0.0           | -               |
| 14.0127 | 2200 | 0.0           | -               |
| 14.3312 | 2250 | 0.0           | -               |
| 14.6497 | 2300 | 0.0           | -               |
| 14.9682 | 2350 | 0.0           | -               |
| 15.2866 | 2400 | 0.0           | -               |
| 15.6051 | 2450 | 0.0           | -               |
| 15.9236 | 2500 | 0.0           | -               |
| 16.2420 | 2550 | 0.0           | -               |
| 16.5605 | 2600 | 0.0           | -               |
| 16.8790 | 2650 | 0.0           | -               |
| 17.1975 | 2700 | 0.0           | -               |
| 17.5159 | 2750 | 0.0           | -               |
| 17.8344 | 2800 | 0.0           | -               |
| 18.1529 | 2850 | 0.0           | -               |
| 18.4713 | 2900 | 0.0           | -               |
| 18.7898 | 2950 | 0.0           | -               |
| 19.1083 | 3000 | 0.0           | -               |
| 19.4268 | 3050 | 0.0           | -               |
| 19.7452 | 3100 | 0.0           | -               |
| 20.0637 | 3150 | 0.0           | -               |
| 20.3822 | 3200 | 0.0           | -               |
| 20.7006 | 3250 | 0.0           | -               |
| 21.0191 | 3300 | 0.0           | -               |
| 21.3376 | 3350 | 0.0           | -               |
| 21.6561 | 3400 | 0.0           | -               |
| 21.9745 | 3450 | 0.0           | -               |
| 22.2930 | 3500 | 0.0           | -               |
| 22.6115 | 3550 | 0.0           | -               |
| 22.9299 | 3600 | 0.0           | -               |
| 23.2484 | 3650 | 0.0           | -               |
| 23.5669 | 3700 | 0.0           | -               |
| 23.8854 | 3750 | 0.0           | -               |
| 24.2038 | 3800 | 0.0           | -               |
| 24.5223 | 3850 | 0.0           | -               |
| 24.8408 | 3900 | 0.0           | -               |
| 25.1592 | 3950 | 0.0           | -               |
| 25.4777 | 4000 | 0.0           | -               |
| 25.7962 | 4050 | 0.0           | -               |
| 26.1146 | 4100 | 0.0           | -               |
| 26.4331 | 4150 | 0.0           | -               |
| 26.7516 | 4200 | 0.0           | -               |
| 27.0701 | 4250 | 0.0           | -               |
| 27.3885 | 4300 | 0.0           | -               |
| 27.7070 | 4350 | 0.0           | -               |
| 28.0255 | 4400 | 0.0           | -               |
| 28.3439 | 4450 | 0.0           | -               |
| 28.6624 | 4500 | 0.0           | -               |
| 28.9809 | 4550 | 0.0           | -               |
| 29.2994 | 4600 | 0.0           | -               |
| 29.6178 | 4650 | 0.0           | -               |
| 29.9363 | 4700 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->