File size: 24,567 Bytes
8ddce09 3c8e0de 8ddce09 3c8e0de 8ddce09 3c8e0de 8ddce09 3c8e0de 8ddce09 3c8e0de 8ddce09 3c8e0de 8ddce09 3c8e0de 778d0f5 3c8e0de 8ddce09 3c8e0de 8ddce09 778d0f5 3c8e0de 8ddce09 3c8e0de 778d0f5 3c8e0de 778d0f5 3c8e0de 778d0f5 3c8e0de 8ddce09 3c8e0de 8ddce09 3c8e0de 778d0f5 8ddce09 778d0f5 8ddce09 3c8e0de 8ddce09 3c8e0de 778d0f5 3c8e0de 8ddce09 3c8e0de 8ddce09 778d0f5 8ddce09 778d0f5 8ddce09 778d0f5 8ddce09 778d0f5 8ddce09 778d0f5 8ddce09 778d0f5 8ddce09 778d0f5 8ddce09 778d0f5 8ddce09 778d0f5 8ddce09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[라 메르]루미너스 리프팅 쿠션 파운데이션 SPF 20 [00003] 로즈 아이보리 (#M)11st>메이크업>페이스메이크업>파운데이션
11st > 뷰티 > 메이크업 > 페이스메이크업 > 파운데이션'
- text: 바비브라운 인텐시브 스킨 세럼 파운데이션 30ml (SPF40) 샌드 (#M)화장품/미용>베이스메이크업>파운데이션>리퀴드형 Naverstore
> 화장품/미용 > 베이스메이크업 > 파운데이션 > 리퀴드형
- text: 입생로랑 뚜쉬 에끌라 글로우-팩트 쿠션 B20 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 쿠션/팩트 LotteOn >
뷰티 > 메이크업 > 베이스메이크업 > 쿠션/팩트
- text: IOPE 퍼펙트 커버 베이스 35ml 메이크업 컨실러 비비 1호 라이트그린 (#M)SSG.COM/메이크업/베이스메이크업/메이크업베이스
ssg > 뷰티 > 메이크업 > 베이스메이크업 > 메이크업베이스
- text: 에스쁘아 프로 테일러 파운데이션 비글로우 SPF25 PA++ 1호 포슬린 × 1개 (#M)SSG.COM/메이크업/베이스메이크업/쿠션파운데이션
ssg > 뷰티 > 메이크업 > 베이스메이크업 > 쿠션파운데이션
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.9587109768378651
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 | <ul><li>'랑콤 뗑 이돌 울트라 웨어 스틱 SF 15 No. 04 Beige N 216699 LotteOn > 뷰티 > 베이스메이크업 > 파우더 LotteOn > 뷰티 > 베이스메이크업 > 파우더'</li><li>'조성아 슈퍼핏 메가프루프 스틱파데 1+1+에센스 미스트 100mlx1 21호 (#M)위메프 > 뷰티 > 메이크업 > 베이스 메이크업 > 파운데이션 위메프 > 뷰티 > 메이크업 > 베이스 메이크업 > 파운데이션'</li><li>'에스쁘아 가을 메이크업 빅세일 ~50% / 신상 스틱 파운데이션, 밋츠 그레이 립스틱, 룩북 팔레트 등 총 출동 비글로우스틱파데(아이보리)_611123517 ssg > 뷰티 > 메이크업 > 아이메이크업 > 아이섀도우 ssg > 뷰티 > 메이크업 > 아이메이크업 > 아이섀도우'</li></ul> |
| 1 | <ul><li>'[백화점정품/당일출고] 맥 스트롭 크림 50ml/핑크라이트(오리지널) (#M)홈>화장품/미용>베이스메이크업>메이크업베이스 Naverstore > 화장품/미용 > 베이스메이크업 > 메이크업베이스'</li><li>'에브리데이 IOPE 퍼펙트 커버 베이스35ml 메이크업 컨실러 비비 13579EA ◎&쿠팡 본상품선택 × ◎&쿠팡 2호 라이트퍼플 (#M)쿠팡 홈>뷰티>메이크업>베이스 메이크업>베이스 메이크업 세트 Coupang > 뷰티 > 메이크업 > 베이스 메이크업 > 베이스 메이크업 세트'</li><li>'맥 스트롭 크림 50ml 실버라이트 (#M)위메프 > 뷰티 > 남성화장품 > 남성 메이크업 > 남성 베이스메이크업 위메프 > 뷰티 > 남성화장품 > 남성 메이크업 > 남성 베이스메이크업'</li></ul> |
| 0 | <ul><li>'[본사직영][기획]NEW 헤라 실키 스테이 파운데이션+파운데이션 브러쉬(48000원상당 본품동일사양)+블러셔 21W1 (#M)홈>메이크업>베이스메이크업 HMALL > 뷰티 > 메이크업 > 베이스메이크업'</li><li>'CHANEL 레 베쥬 뚜쉬 드 뗑 BR12 (#M)홈>화장품/미용>베이스메이크업>파운데이션>리퀴드형 Naverstore > 화장품/미용 > 베이스메이크업 > 파운데이션 > 리퀴드형'</li><li>'에스티로더 [단독] 더블웨어 파운데이션 세트 (+마스카라 정품 ) 226792 1C0 쉘 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션'</li></ul> |
| 4 | <ul><li>'에스티 로더 더블 웨어 spf 10 - 36 샌드 30ml LotteOn > 뷰티 > 베이스메이크업 > 파운데이션 LotteOn > 뷰티 > 베이스메이크업 > 파운데이션'</li><li>'Maybelline New York Maybelline New York Dream Smooth Mousse Foundation, Pure Beige, 0.49 Ounce LotteOn > 뷰티 > 색조메이크업 > 색조메이크업세트 LotteOn > 뷰티 > 색조메이크업 > 색조메이크업세트'</li><li>'수블리마지 르 뗑 10 베쥬 LotteOn > 뷰티 > 베이스메이크업 > 파운데이션 LotteOn > 뷰티 > 베이스메이크업 > 파운데이션'</li></ul> |
| 3 | <ul><li>'[포렌코즈] 필 워터 쿠션 상세 설명 참조_피부타입:23호 내추럴베이지 (#M)쿠팡 홈>뷰티>메이크업>베이스 메이크업>파운데이션 Coupang > 뷰티 > 메이크업 > 베이스 메이크업 > 파운데이션'</li><li>'[현대백화점][시세이도]UV 프로텍티브 컴팩트 파운데이션 본품 SPF35/PA+++ [00004] 미디엄 아이보리 홈>화장품/미용>베이스메이크업>파운데이션>쿠션형;홈>화장품/미용>선케어>선파우더/쿠션;(#M)홈>화장품/미용>베이스메이크업>파운데이션>리퀴드형 Naverstore > 화장품/미용 > 선케어 > 선파우더/쿠션'</li><li>'롬앤 제로쿠션 spf20pa++ 0g발림성 세미매트쿠션 내추럴21호본품 화장품/향수>에어쿠션/팩트>에어쿠션;(#M)화장품/향수>베이스메이크업>파우더/트윈케이크 Gmarket > 뷰티 > 화장품/향수 > 베이스메이크업 > 파우더/트윈케이크'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.9587 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt5_4_test_flat")
# Run inference
preds = model("입생로랑 뚜쉬 에끌라 글로우-팩트 쿠션 B20 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 쿠션/팩트 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 쿠션/팩트")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 10 | 23.036 | 53 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 50 |
| 1 | 50 |
| 2 | 50 |
| 3 | 50 |
| 4 | 50 |
### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:-----:|:-------------:|:---------------:|
| 0.0026 | 1 | 0.3977 | - |
| 0.1279 | 50 | 0.4192 | - |
| 0.2558 | 100 | 0.3842 | - |
| 0.3836 | 150 | 0.3421 | - |
| 0.5115 | 200 | 0.3111 | - |
| 0.6394 | 250 | 0.2705 | - |
| 0.7673 | 300 | 0.2216 | - |
| 0.8951 | 350 | 0.1494 | - |
| 1.0230 | 400 | 0.0875 | - |
| 1.1509 | 450 | 0.0521 | - |
| 1.2788 | 500 | 0.0321 | - |
| 1.4066 | 550 | 0.004 | - |
| 1.5345 | 600 | 0.0019 | - |
| 1.6624 | 650 | 0.0011 | - |
| 1.7903 | 700 | 0.0005 | - |
| 1.9182 | 750 | 0.0004 | - |
| 2.0460 | 800 | 0.0004 | - |
| 2.1739 | 850 | 0.0003 | - |
| 2.3018 | 900 | 0.0003 | - |
| 2.4297 | 950 | 0.0003 | - |
| 2.5575 | 1000 | 0.0001 | - |
| 2.6854 | 1050 | 0.0003 | - |
| 2.8133 | 1100 | 0.0005 | - |
| 2.9412 | 1150 | 0.0003 | - |
| 3.0691 | 1200 | 0.0001 | - |
| 3.1969 | 1250 | 0.0001 | - |
| 3.3248 | 1300 | 0.0 | - |
| 3.4527 | 1350 | 0.0001 | - |
| 3.5806 | 1400 | 0.0 | - |
| 3.7084 | 1450 | 0.0 | - |
| 3.8363 | 1500 | 0.0 | - |
| 3.9642 | 1550 | 0.0 | - |
| 4.0921 | 1600 | 0.0 | - |
| 4.2199 | 1650 | 0.0 | - |
| 4.3478 | 1700 | 0.0 | - |
| 4.4757 | 1750 | 0.0 | - |
| 4.6036 | 1800 | 0.0 | - |
| 4.7315 | 1850 | 0.0 | - |
| 4.8593 | 1900 | 0.0 | - |
| 4.9872 | 1950 | 0.0002 | - |
| 5.1151 | 2000 | 0.0018 | - |
| 5.2430 | 2050 | 0.0009 | - |
| 5.3708 | 2100 | 0.0003 | - |
| 5.4987 | 2150 | 0.0 | - |
| 5.6266 | 2200 | 0.0002 | - |
| 5.7545 | 2250 | 0.0 | - |
| 5.8824 | 2300 | 0.0002 | - |
| 6.0102 | 2350 | 0.0 | - |
| 6.1381 | 2400 | 0.0007 | - |
| 6.2660 | 2450 | 0.0 | - |
| 6.3939 | 2500 | 0.0 | - |
| 6.5217 | 2550 | 0.0 | - |
| 6.6496 | 2600 | 0.0 | - |
| 6.7775 | 2650 | 0.0 | - |
| 6.9054 | 2700 | 0.0 | - |
| 7.0332 | 2750 | 0.0 | - |
| 7.1611 | 2800 | 0.0 | - |
| 7.2890 | 2850 | 0.0 | - |
| 7.4169 | 2900 | 0.0 | - |
| 7.5448 | 2950 | 0.0 | - |
| 7.6726 | 3000 | 0.0 | - |
| 7.8005 | 3050 | 0.0 | - |
| 7.9284 | 3100 | 0.0 | - |
| 8.0563 | 3150 | 0.0 | - |
| 8.1841 | 3200 | 0.0 | - |
| 8.3120 | 3250 | 0.0 | - |
| 8.4399 | 3300 | 0.0 | - |
| 8.5678 | 3350 | 0.0 | - |
| 8.6957 | 3400 | 0.0 | - |
| 8.8235 | 3450 | 0.0 | - |
| 8.9514 | 3500 | 0.0 | - |
| 9.0793 | 3550 | 0.0 | - |
| 9.2072 | 3600 | 0.0 | - |
| 9.3350 | 3650 | 0.0 | - |
| 9.4629 | 3700 | 0.0 | - |
| 9.5908 | 3750 | 0.0 | - |
| 9.7187 | 3800 | 0.0 | - |
| 9.8465 | 3850 | 0.0 | - |
| 9.9744 | 3900 | 0.0029 | - |
| 10.1023 | 3950 | 0.0026 | - |
| 10.2302 | 4000 | 0.0037 | - |
| 10.3581 | 4050 | 0.0001 | - |
| 10.4859 | 4100 | 0.0 | - |
| 10.6138 | 4150 | 0.0003 | - |
| 10.7417 | 4200 | 0.0 | - |
| 10.8696 | 4250 | 0.0 | - |
| 10.9974 | 4300 | 0.0 | - |
| 11.1253 | 4350 | 0.0 | - |
| 11.2532 | 4400 | 0.0 | - |
| 11.3811 | 4450 | 0.0 | - |
| 11.5090 | 4500 | 0.0 | - |
| 11.6368 | 4550 | 0.0 | - |
| 11.7647 | 4600 | 0.0 | - |
| 11.8926 | 4650 | 0.0 | - |
| 12.0205 | 4700 | 0.0 | - |
| 12.1483 | 4750 | 0.0 | - |
| 12.2762 | 4800 | 0.0 | - |
| 12.4041 | 4850 | 0.0 | - |
| 12.5320 | 4900 | 0.0 | - |
| 12.6598 | 4950 | 0.0 | - |
| 12.7877 | 5000 | 0.0 | - |
| 12.9156 | 5050 | 0.0 | - |
| 13.0435 | 5100 | 0.0 | - |
| 13.1714 | 5150 | 0.0 | - |
| 13.2992 | 5200 | 0.0 | - |
| 13.4271 | 5250 | 0.0 | - |
| 13.5550 | 5300 | 0.0 | - |
| 13.6829 | 5350 | 0.0 | - |
| 13.8107 | 5400 | 0.0 | - |
| 13.9386 | 5450 | 0.0 | - |
| 14.0665 | 5500 | 0.0 | - |
| 14.1944 | 5550 | 0.0 | - |
| 14.3223 | 5600 | 0.0 | - |
| 14.4501 | 5650 | 0.0 | - |
| 14.5780 | 5700 | 0.0 | - |
| 14.7059 | 5750 | 0.0 | - |
| 14.8338 | 5800 | 0.0 | - |
| 14.9616 | 5850 | 0.0 | - |
| 15.0895 | 5900 | 0.0 | - |
| 15.2174 | 5950 | 0.0 | - |
| 15.3453 | 6000 | 0.0 | - |
| 15.4731 | 6050 | 0.0 | - |
| 15.6010 | 6100 | 0.0 | - |
| 15.7289 | 6150 | 0.0 | - |
| 15.8568 | 6200 | 0.0 | - |
| 15.9847 | 6250 | 0.0 | - |
| 16.1125 | 6300 | 0.0 | - |
| 16.2404 | 6350 | 0.0 | - |
| 16.3683 | 6400 | 0.0 | - |
| 16.4962 | 6450 | 0.0 | - |
| 16.6240 | 6500 | 0.0 | - |
| 16.7519 | 6550 | 0.0 | - |
| 16.8798 | 6600 | 0.0 | - |
| 17.0077 | 6650 | 0.0 | - |
| 17.1355 | 6700 | 0.0 | - |
| 17.2634 | 6750 | 0.0 | - |
| 17.3913 | 6800 | 0.0 | - |
| 17.5192 | 6850 | 0.0 | - |
| 17.6471 | 6900 | 0.0 | - |
| 17.7749 | 6950 | 0.0 | - |
| 17.9028 | 7000 | 0.0 | - |
| 18.0307 | 7050 | 0.0 | - |
| 18.1586 | 7100 | 0.0 | - |
| 18.2864 | 7150 | 0.0 | - |
| 18.4143 | 7200 | 0.0 | - |
| 18.5422 | 7250 | 0.0 | - |
| 18.6701 | 7300 | 0.0 | - |
| 18.7980 | 7350 | 0.0 | - |
| 18.9258 | 7400 | 0.0 | - |
| 19.0537 | 7450 | 0.0 | - |
| 19.1816 | 7500 | 0.0 | - |
| 19.3095 | 7550 | 0.0 | - |
| 19.4373 | 7600 | 0.0 | - |
| 19.5652 | 7650 | 0.0 | - |
| 19.6931 | 7700 | 0.0 | - |
| 19.8210 | 7750 | 0.0 | - |
| 19.9488 | 7800 | 0.0 | - |
| 20.0767 | 7850 | 0.0 | - |
| 20.2046 | 7900 | 0.0 | - |
| 20.3325 | 7950 | 0.0 | - |
| 20.4604 | 8000 | 0.0 | - |
| 20.5882 | 8050 | 0.0 | - |
| 20.7161 | 8100 | 0.0 | - |
| 20.8440 | 8150 | 0.0 | - |
| 20.9719 | 8200 | 0.0 | - |
| 21.0997 | 8250 | 0.0 | - |
| 21.2276 | 8300 | 0.0 | - |
| 21.3555 | 8350 | 0.0 | - |
| 21.4834 | 8400 | 0.0 | - |
| 21.6113 | 8450 | 0.0 | - |
| 21.7391 | 8500 | 0.0 | - |
| 21.8670 | 8550 | 0.0 | - |
| 21.9949 | 8600 | 0.0 | - |
| 22.1228 | 8650 | 0.0 | - |
| 22.2506 | 8700 | 0.0 | - |
| 22.3785 | 8750 | 0.0 | - |
| 22.5064 | 8800 | 0.0 | - |
| 22.6343 | 8850 | 0.0 | - |
| 22.7621 | 8900 | 0.0 | - |
| 22.8900 | 8950 | 0.0 | - |
| 23.0179 | 9000 | 0.0 | - |
| 23.1458 | 9050 | 0.0 | - |
| 23.2737 | 9100 | 0.0 | - |
| 23.4015 | 9150 | 0.0 | - |
| 23.5294 | 9200 | 0.0 | - |
| 23.6573 | 9250 | 0.0 | - |
| 23.7852 | 9300 | 0.0 | - |
| 23.9130 | 9350 | 0.0 | - |
| 24.0409 | 9400 | 0.0 | - |
| 24.1688 | 9450 | 0.0 | - |
| 24.2967 | 9500 | 0.0 | - |
| 24.4246 | 9550 | 0.0 | - |
| 24.5524 | 9600 | 0.0 | - |
| 24.6803 | 9650 | 0.0 | - |
| 24.8082 | 9700 | 0.0 | - |
| 24.9361 | 9750 | 0.0 | - |
| 25.0639 | 9800 | 0.0 | - |
| 25.1918 | 9850 | 0.0 | - |
| 25.3197 | 9900 | 0.0 | - |
| 25.4476 | 9950 | 0.0 | - |
| 25.5754 | 10000 | 0.0 | - |
| 25.7033 | 10050 | 0.0 | - |
| 25.8312 | 10100 | 0.0 | - |
| 25.9591 | 10150 | 0.0 | - |
| 26.0870 | 10200 | 0.0 | - |
| 26.2148 | 10250 | 0.0 | - |
| 26.3427 | 10300 | 0.0 | - |
| 26.4706 | 10350 | 0.0 | - |
| 26.5985 | 10400 | 0.0 | - |
| 26.7263 | 10450 | 0.0 | - |
| 26.8542 | 10500 | 0.0 | - |
| 26.9821 | 10550 | 0.0 | - |
| 27.1100 | 10600 | 0.0 | - |
| 27.2379 | 10650 | 0.0 | - |
| 27.3657 | 10700 | 0.0 | - |
| 27.4936 | 10750 | 0.0 | - |
| 27.6215 | 10800 | 0.0 | - |
| 27.7494 | 10850 | 0.0 | - |
| 27.8772 | 10900 | 0.0 | - |
| 28.0051 | 10950 | 0.0 | - |
| 28.1330 | 11000 | 0.0 | - |
| 28.2609 | 11050 | 0.0 | - |
| 28.3887 | 11100 | 0.0 | - |
| 28.5166 | 11150 | 0.0 | - |
| 28.6445 | 11200 | 0.0 | - |
| 28.7724 | 11250 | 0.0 | - |
| 28.9003 | 11300 | 0.0 | - |
| 29.0281 | 11350 | 0.0 | - |
| 29.1560 | 11400 | 0.0 | - |
| 29.2839 | 11450 | 0.0 | - |
| 29.4118 | 11500 | 0.0 | - |
| 29.5396 | 11550 | 0.0 | - |
| 29.6675 | 11600 | 0.0 | - |
| 29.7954 | 11650 | 0.0 | - |
| 29.9233 | 11700 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |