File size: 24,567 Bytes
8ddce09
 
 
 
 
 
 
 
 
 
 
 
3c8e0de
 
 
 
 
 
 
 
 
 
8ddce09
 
 
 
 
 
 
 
 
 
 
 
 
3c8e0de
8ddce09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c8e0de
 
 
 
 
 
 
8ddce09
 
 
 
 
 
3c8e0de
8ddce09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c8e0de
8ddce09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c8e0de
8ddce09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c8e0de
 
 
 
 
 
 
 
 
 
 
 
 
 
778d0f5
 
3c8e0de
 
 
 
8ddce09
3c8e0de
 
 
8ddce09
778d0f5
3c8e0de
 
8ddce09
3c8e0de
 
 
 
 
778d0f5
3c8e0de
778d0f5
3c8e0de
 
 
 
 
778d0f5
3c8e0de
 
 
 
 
 
8ddce09
 
 
 
 
 
 
 
 
 
 
 
 
3c8e0de
 
8ddce09
 
 
3c8e0de
 
778d0f5
8ddce09
778d0f5
8ddce09
 
 
 
3c8e0de
8ddce09
3c8e0de
 
 
 
 
778d0f5
3c8e0de
8ddce09
 
3c8e0de
8ddce09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
778d0f5
 
 
 
8ddce09
778d0f5
8ddce09
778d0f5
 
8ddce09
 
778d0f5
8ddce09
 
 
778d0f5
8ddce09
 
778d0f5
8ddce09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
778d0f5
 
8ddce09
 
 
 
 
 
 
 
 
 
 
778d0f5
8ddce09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
778d0f5
8ddce09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[라 메르]루미너스 리프팅 쿠션 파운데이션 SPF 20 [00003] 로즈 아이보리 (#M)11st>메이크업>페이스메이크업>파운데이션
    11st > 뷰티 > 메이크업 > 페이스메이크업 > 파운데이션'
- text: 바비브라운 인텐시브 스킨 세럼 파운데이션 30ml (SPF40) 샌드 (#M)화장품/미용>베이스메이크업>파운데이션>리퀴드형 Naverstore
    > 화장품/미용 > 베이스메이크업 > 파운데이션 > 리퀴드형
- text: 입생로랑 뚜쉬 에끌라 글로우-팩트 쿠션 B20  LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 쿠션/팩트 LotteOn >
    뷰티 > 메이크업 > 베이스메이크업 > 쿠션/팩트
- text: IOPE 퍼펙트 커버 베이스 35ml 메이크업 컨실러 비비 1 라이트그린 (#M)SSG.COM/메이크업/베이스메이크업/메이크업베이스
    ssg > 뷰티 > 메이크업 > 베이스메이크업 > 메이크업베이스
- text: 에스쁘아 프로 테일러 파운데이션 비글로우 SPF25 PA++ 1 포슬린 × 1 (#M)SSG.COM/메이크업/베이스메이크업/쿠션파운데이션
    ssg > 뷰티 > 메이크업 > 베이스메이크업 > 쿠션파운데이션
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.9587109768378651
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | <ul><li>'랑콤 뗑 이돌 울트라 웨어 스틱 SF 15 No. 04 Beige N 216699 LotteOn > 뷰티 > 베이스메이크업 > 파우더 LotteOn > 뷰티 > 베이스메이크업 > 파우더'</li><li>'조성아 슈퍼핏 메가프루프 스틱파데 1+1+에센스 미스트 100mlx1 21호 (#M)위메프 > 뷰티 > 메이크업 > 베이스 메이크업 > 파운데이션 위메프 > 뷰티 > 메이크업 > 베이스 메이크업 > 파운데이션'</li><li>'에스쁘아 가을 메이크업 빅세일 ~50% / 신상 스틱 파운데이션, 밋츠 그레이 립스틱, 룩북 팔레트 등 총 출동 비글로우스틱파데(아이보리)_611123517 ssg > 뷰티 > 메이크업 > 아이메이크업 > 아이섀도우 ssg > 뷰티 > 메이크업 > 아이메이크업 > 아이섀도우'</li></ul>                                                  |
| 1     | <ul><li>'[백화점정품/당일출고] 맥 스트롭 크림 50ml/핑크라이트(오리지널)  (#M)홈>화장품/미용>베이스메이크업>메이크업베이스 Naverstore > 화장품/미용 > 베이스메이크업 > 메이크업베이스'</li><li>'에브리데이 IOPE 퍼펙트 커버 베이스35ml 메이크업 컨실러 비비 13579EA ◎&쿠팡 본상품선택 × ◎&쿠팡 2호 라이트퍼플 (#M)쿠팡 홈>뷰티>메이크업>베이스 메이크업>베이스 메이크업 세트 Coupang > 뷰티 > 메이크업 > 베이스 메이크업 > 베이스 메이크업 세트'</li><li>'맥 스트롭 크림 50ml 실버라이트 (#M)위메프 > 뷰티 > 남성화장품 > 남성 메이크업 > 남성 베이스메이크업 위메프 > 뷰티 > 남성화장품 > 남성 메이크업 > 남성 베이스메이크업'</li></ul>                                                        |
| 0     | <ul><li>'[본사직영][기획]NEW 헤라 실키 스테이 파운데이션+파운데이션 브러쉬(48000원상당 본품동일사양)+블러셔 21W1 (#M)홈>메이크업>베이스메이크업 HMALL > 뷰티 > 메이크업 > 베이스메이크업'</li><li>'CHANEL 레 베쥬 뚜쉬 드 뗑 BR12 (#M)홈>화장품/미용>베이스메이크업>파운데이션>리퀴드형 Naverstore > 화장품/미용 > 베이스메이크업 > 파운데이션 > 리퀴드형'</li><li>'에스티로더 [단독] 더블웨어 파운데이션 세트 (+마스카라 정품 ) 226792 1C0 쉘 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 파운데이션'</li></ul>                                                                                     |
| 4     | <ul><li>'에스티 로더 더블 웨어 spf 10 - 36 샌드 30ml  LotteOn > 뷰티 > 베이스메이크업 > 파운데이션 LotteOn > 뷰티 > 베이스메이크업 > 파운데이션'</li><li>'Maybelline New York Maybelline New York Dream Smooth Mousse Foundation, Pure Beige, 0.49 Ounce  LotteOn > 뷰티 > 색조메이크업 > 색조메이크업세트 LotteOn > 뷰티 > 색조메이크업 > 색조메이크업세트'</li><li>'수블리마지 르 뗑 10 베쥬 LotteOn > 뷰티 > 베이스메이크업 > 파운데이션 LotteOn > 뷰티 > 베이스메이크업 > 파운데이션'</li></ul>                                                                                         |
| 3     | <ul><li>'[포렌코즈] 필 워터 쿠션 상세 설명 참조_피부타입:23호 내추럴베이지 (#M)쿠팡 홈>뷰티>메이크업>베이스 메이크업>파운데이션 Coupang > 뷰티 > 메이크업 > 베이스 메이크업 > 파운데이션'</li><li>'[현대백화점][시세이도]UV 프로텍티브 컴팩트 파운데이션 본품 SPF35/PA+++ [00004] 미디엄 아이보리 홈>화장품/미용>베이스메이크업>파운데이션>쿠션형;홈>화장품/미용>선케어>선파우더/쿠션;(#M)홈>화장품/미용>베이스메이크업>파운데이션>리퀴드형 Naverstore > 화장품/미용 > 선케어 > 선파우더/쿠션'</li><li>'롬앤 제로쿠션 spf20pa++ 0g발림성 세미매트쿠션 내추럴21호본품 화장품/향수>에어쿠션/팩트>에어쿠션;(#M)화장품/향수>베이스메이크업>파우더/트윈케이크 Gmarket > 뷰티 > 화장품/향수 > 베이스메이크업 > 파우더/트윈케이크'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.9587   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_top_bt5_4_test_flat")
# Run inference
preds = model("입생로랑 뚜쉬 에끌라 글로우-팩트 쿠션 B20  LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 쿠션/팩트 LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 쿠션/팩트")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 10  | 23.036 | 53  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 50                    |
| 2     | 50                    |
| 3     | 50                    |
| 4     | 50                    |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step  | Training Loss | Validation Loss |
|:-------:|:-----:|:-------------:|:---------------:|
| 0.0026  | 1     | 0.3977        | -               |
| 0.1279  | 50    | 0.4192        | -               |
| 0.2558  | 100   | 0.3842        | -               |
| 0.3836  | 150   | 0.3421        | -               |
| 0.5115  | 200   | 0.3111        | -               |
| 0.6394  | 250   | 0.2705        | -               |
| 0.7673  | 300   | 0.2216        | -               |
| 0.8951  | 350   | 0.1494        | -               |
| 1.0230  | 400   | 0.0875        | -               |
| 1.1509  | 450   | 0.0521        | -               |
| 1.2788  | 500   | 0.0321        | -               |
| 1.4066  | 550   | 0.004         | -               |
| 1.5345  | 600   | 0.0019        | -               |
| 1.6624  | 650   | 0.0011        | -               |
| 1.7903  | 700   | 0.0005        | -               |
| 1.9182  | 750   | 0.0004        | -               |
| 2.0460  | 800   | 0.0004        | -               |
| 2.1739  | 850   | 0.0003        | -               |
| 2.3018  | 900   | 0.0003        | -               |
| 2.4297  | 950   | 0.0003        | -               |
| 2.5575  | 1000  | 0.0001        | -               |
| 2.6854  | 1050  | 0.0003        | -               |
| 2.8133  | 1100  | 0.0005        | -               |
| 2.9412  | 1150  | 0.0003        | -               |
| 3.0691  | 1200  | 0.0001        | -               |
| 3.1969  | 1250  | 0.0001        | -               |
| 3.3248  | 1300  | 0.0           | -               |
| 3.4527  | 1350  | 0.0001        | -               |
| 3.5806  | 1400  | 0.0           | -               |
| 3.7084  | 1450  | 0.0           | -               |
| 3.8363  | 1500  | 0.0           | -               |
| 3.9642  | 1550  | 0.0           | -               |
| 4.0921  | 1600  | 0.0           | -               |
| 4.2199  | 1650  | 0.0           | -               |
| 4.3478  | 1700  | 0.0           | -               |
| 4.4757  | 1750  | 0.0           | -               |
| 4.6036  | 1800  | 0.0           | -               |
| 4.7315  | 1850  | 0.0           | -               |
| 4.8593  | 1900  | 0.0           | -               |
| 4.9872  | 1950  | 0.0002        | -               |
| 5.1151  | 2000  | 0.0018        | -               |
| 5.2430  | 2050  | 0.0009        | -               |
| 5.3708  | 2100  | 0.0003        | -               |
| 5.4987  | 2150  | 0.0           | -               |
| 5.6266  | 2200  | 0.0002        | -               |
| 5.7545  | 2250  | 0.0           | -               |
| 5.8824  | 2300  | 0.0002        | -               |
| 6.0102  | 2350  | 0.0           | -               |
| 6.1381  | 2400  | 0.0007        | -               |
| 6.2660  | 2450  | 0.0           | -               |
| 6.3939  | 2500  | 0.0           | -               |
| 6.5217  | 2550  | 0.0           | -               |
| 6.6496  | 2600  | 0.0           | -               |
| 6.7775  | 2650  | 0.0           | -               |
| 6.9054  | 2700  | 0.0           | -               |
| 7.0332  | 2750  | 0.0           | -               |
| 7.1611  | 2800  | 0.0           | -               |
| 7.2890  | 2850  | 0.0           | -               |
| 7.4169  | 2900  | 0.0           | -               |
| 7.5448  | 2950  | 0.0           | -               |
| 7.6726  | 3000  | 0.0           | -               |
| 7.8005  | 3050  | 0.0           | -               |
| 7.9284  | 3100  | 0.0           | -               |
| 8.0563  | 3150  | 0.0           | -               |
| 8.1841  | 3200  | 0.0           | -               |
| 8.3120  | 3250  | 0.0           | -               |
| 8.4399  | 3300  | 0.0           | -               |
| 8.5678  | 3350  | 0.0           | -               |
| 8.6957  | 3400  | 0.0           | -               |
| 8.8235  | 3450  | 0.0           | -               |
| 8.9514  | 3500  | 0.0           | -               |
| 9.0793  | 3550  | 0.0           | -               |
| 9.2072  | 3600  | 0.0           | -               |
| 9.3350  | 3650  | 0.0           | -               |
| 9.4629  | 3700  | 0.0           | -               |
| 9.5908  | 3750  | 0.0           | -               |
| 9.7187  | 3800  | 0.0           | -               |
| 9.8465  | 3850  | 0.0           | -               |
| 9.9744  | 3900  | 0.0029        | -               |
| 10.1023 | 3950  | 0.0026        | -               |
| 10.2302 | 4000  | 0.0037        | -               |
| 10.3581 | 4050  | 0.0001        | -               |
| 10.4859 | 4100  | 0.0           | -               |
| 10.6138 | 4150  | 0.0003        | -               |
| 10.7417 | 4200  | 0.0           | -               |
| 10.8696 | 4250  | 0.0           | -               |
| 10.9974 | 4300  | 0.0           | -               |
| 11.1253 | 4350  | 0.0           | -               |
| 11.2532 | 4400  | 0.0           | -               |
| 11.3811 | 4450  | 0.0           | -               |
| 11.5090 | 4500  | 0.0           | -               |
| 11.6368 | 4550  | 0.0           | -               |
| 11.7647 | 4600  | 0.0           | -               |
| 11.8926 | 4650  | 0.0           | -               |
| 12.0205 | 4700  | 0.0           | -               |
| 12.1483 | 4750  | 0.0           | -               |
| 12.2762 | 4800  | 0.0           | -               |
| 12.4041 | 4850  | 0.0           | -               |
| 12.5320 | 4900  | 0.0           | -               |
| 12.6598 | 4950  | 0.0           | -               |
| 12.7877 | 5000  | 0.0           | -               |
| 12.9156 | 5050  | 0.0           | -               |
| 13.0435 | 5100  | 0.0           | -               |
| 13.1714 | 5150  | 0.0           | -               |
| 13.2992 | 5200  | 0.0           | -               |
| 13.4271 | 5250  | 0.0           | -               |
| 13.5550 | 5300  | 0.0           | -               |
| 13.6829 | 5350  | 0.0           | -               |
| 13.8107 | 5400  | 0.0           | -               |
| 13.9386 | 5450  | 0.0           | -               |
| 14.0665 | 5500  | 0.0           | -               |
| 14.1944 | 5550  | 0.0           | -               |
| 14.3223 | 5600  | 0.0           | -               |
| 14.4501 | 5650  | 0.0           | -               |
| 14.5780 | 5700  | 0.0           | -               |
| 14.7059 | 5750  | 0.0           | -               |
| 14.8338 | 5800  | 0.0           | -               |
| 14.9616 | 5850  | 0.0           | -               |
| 15.0895 | 5900  | 0.0           | -               |
| 15.2174 | 5950  | 0.0           | -               |
| 15.3453 | 6000  | 0.0           | -               |
| 15.4731 | 6050  | 0.0           | -               |
| 15.6010 | 6100  | 0.0           | -               |
| 15.7289 | 6150  | 0.0           | -               |
| 15.8568 | 6200  | 0.0           | -               |
| 15.9847 | 6250  | 0.0           | -               |
| 16.1125 | 6300  | 0.0           | -               |
| 16.2404 | 6350  | 0.0           | -               |
| 16.3683 | 6400  | 0.0           | -               |
| 16.4962 | 6450  | 0.0           | -               |
| 16.6240 | 6500  | 0.0           | -               |
| 16.7519 | 6550  | 0.0           | -               |
| 16.8798 | 6600  | 0.0           | -               |
| 17.0077 | 6650  | 0.0           | -               |
| 17.1355 | 6700  | 0.0           | -               |
| 17.2634 | 6750  | 0.0           | -               |
| 17.3913 | 6800  | 0.0           | -               |
| 17.5192 | 6850  | 0.0           | -               |
| 17.6471 | 6900  | 0.0           | -               |
| 17.7749 | 6950  | 0.0           | -               |
| 17.9028 | 7000  | 0.0           | -               |
| 18.0307 | 7050  | 0.0           | -               |
| 18.1586 | 7100  | 0.0           | -               |
| 18.2864 | 7150  | 0.0           | -               |
| 18.4143 | 7200  | 0.0           | -               |
| 18.5422 | 7250  | 0.0           | -               |
| 18.6701 | 7300  | 0.0           | -               |
| 18.7980 | 7350  | 0.0           | -               |
| 18.9258 | 7400  | 0.0           | -               |
| 19.0537 | 7450  | 0.0           | -               |
| 19.1816 | 7500  | 0.0           | -               |
| 19.3095 | 7550  | 0.0           | -               |
| 19.4373 | 7600  | 0.0           | -               |
| 19.5652 | 7650  | 0.0           | -               |
| 19.6931 | 7700  | 0.0           | -               |
| 19.8210 | 7750  | 0.0           | -               |
| 19.9488 | 7800  | 0.0           | -               |
| 20.0767 | 7850  | 0.0           | -               |
| 20.2046 | 7900  | 0.0           | -               |
| 20.3325 | 7950  | 0.0           | -               |
| 20.4604 | 8000  | 0.0           | -               |
| 20.5882 | 8050  | 0.0           | -               |
| 20.7161 | 8100  | 0.0           | -               |
| 20.8440 | 8150  | 0.0           | -               |
| 20.9719 | 8200  | 0.0           | -               |
| 21.0997 | 8250  | 0.0           | -               |
| 21.2276 | 8300  | 0.0           | -               |
| 21.3555 | 8350  | 0.0           | -               |
| 21.4834 | 8400  | 0.0           | -               |
| 21.6113 | 8450  | 0.0           | -               |
| 21.7391 | 8500  | 0.0           | -               |
| 21.8670 | 8550  | 0.0           | -               |
| 21.9949 | 8600  | 0.0           | -               |
| 22.1228 | 8650  | 0.0           | -               |
| 22.2506 | 8700  | 0.0           | -               |
| 22.3785 | 8750  | 0.0           | -               |
| 22.5064 | 8800  | 0.0           | -               |
| 22.6343 | 8850  | 0.0           | -               |
| 22.7621 | 8900  | 0.0           | -               |
| 22.8900 | 8950  | 0.0           | -               |
| 23.0179 | 9000  | 0.0           | -               |
| 23.1458 | 9050  | 0.0           | -               |
| 23.2737 | 9100  | 0.0           | -               |
| 23.4015 | 9150  | 0.0           | -               |
| 23.5294 | 9200  | 0.0           | -               |
| 23.6573 | 9250  | 0.0           | -               |
| 23.7852 | 9300  | 0.0           | -               |
| 23.9130 | 9350  | 0.0           | -               |
| 24.0409 | 9400  | 0.0           | -               |
| 24.1688 | 9450  | 0.0           | -               |
| 24.2967 | 9500  | 0.0           | -               |
| 24.4246 | 9550  | 0.0           | -               |
| 24.5524 | 9600  | 0.0           | -               |
| 24.6803 | 9650  | 0.0           | -               |
| 24.8082 | 9700  | 0.0           | -               |
| 24.9361 | 9750  | 0.0           | -               |
| 25.0639 | 9800  | 0.0           | -               |
| 25.1918 | 9850  | 0.0           | -               |
| 25.3197 | 9900  | 0.0           | -               |
| 25.4476 | 9950  | 0.0           | -               |
| 25.5754 | 10000 | 0.0           | -               |
| 25.7033 | 10050 | 0.0           | -               |
| 25.8312 | 10100 | 0.0           | -               |
| 25.9591 | 10150 | 0.0           | -               |
| 26.0870 | 10200 | 0.0           | -               |
| 26.2148 | 10250 | 0.0           | -               |
| 26.3427 | 10300 | 0.0           | -               |
| 26.4706 | 10350 | 0.0           | -               |
| 26.5985 | 10400 | 0.0           | -               |
| 26.7263 | 10450 | 0.0           | -               |
| 26.8542 | 10500 | 0.0           | -               |
| 26.9821 | 10550 | 0.0           | -               |
| 27.1100 | 10600 | 0.0           | -               |
| 27.2379 | 10650 | 0.0           | -               |
| 27.3657 | 10700 | 0.0           | -               |
| 27.4936 | 10750 | 0.0           | -               |
| 27.6215 | 10800 | 0.0           | -               |
| 27.7494 | 10850 | 0.0           | -               |
| 27.8772 | 10900 | 0.0           | -               |
| 28.0051 | 10950 | 0.0           | -               |
| 28.1330 | 11000 | 0.0           | -               |
| 28.2609 | 11050 | 0.0           | -               |
| 28.3887 | 11100 | 0.0           | -               |
| 28.5166 | 11150 | 0.0           | -               |
| 28.6445 | 11200 | 0.0           | -               |
| 28.7724 | 11250 | 0.0           | -               |
| 28.9003 | 11300 | 0.0           | -               |
| 29.0281 | 11350 | 0.0           | -               |
| 29.1560 | 11400 | 0.0           | -               |
| 29.2839 | 11450 | 0.0           | -               |
| 29.4118 | 11500 | 0.0           | -               |
| 29.5396 | 11550 | 0.0           | -               |
| 29.6675 | 11600 | 0.0           | -               |
| 29.7954 | 11650 | 0.0           | -               |
| 29.9233 | 11700 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->