SetFit with klue/roberta-base

This is a SetFit model that can be used for Text Classification. This SetFit model uses klue/roberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

  • Model Type: SetFit
  • Sentence Transformer body: klue/roberta-base
  • Classification head: a LogisticRegression instance
  • Maximum Sequence Length: 512 tokens
  • Number of Classes: 4 classes

Model Sources

Model Labels

Label Examples
1.0
  • '갤러리아 GUESS Jeans S/S [공용] NO1D0023 M톤 슬림 와이드 미디엄블루_28 갤러리아백화점'
  • '[현대백화점][헤지스남성] 케이블 울 하프 집업 니트 HZSW3D326G2 [00004] 그레이(G2)/110 (주)현대홈쇼핑'
  • '데일리 플랩 항공 점퍼BK BK_110 (주) 패션플러스'
2.0
  • '스파오 산리오캐릭터즈 수면잠옷BLACKSPPPD4TU03 SPPPD4TU03 19 BLACK_L 100 시그마인터내셔널'
  • 'BYC여성 순면내복내의 베이직여상하2호 BYT6656 베이직여상하_인디안핑크_90 세종유통'
  • 'BYT3842 BYC 데오니아 심플 순면 여자 끈 나시 런닝 검정색_100 에이치앤비 주식회사'
3.0
  • '[켄지 24SS 최신상] ○ 24SS 오가닉 코튼 100 니트 4종 105 '
  • '[갤러리아] 울 아가일 배색 가디건(한화갤러리아㈜ 센터시티) 라이트그레이LG82020_66 한화갤러리아(주)'
  • '오우오벨리SET / W3F91ST03 핑크_FR 주식회사 에스에스지닷컴'
0.0
  • '[현대백화점]엘르이너웨어_ EBMRN713BK 모달에어로웜와플 남런닝BK 95 (주)현대백화점'
  • '비너스(정상) 비너스 면 80수 이합 지그재그 나염 남성 런닝 트렁크 세트_A VMV41 블루(BU)/100_필수선택 (주) 패션플러스'
  • 'JHMRU007 제임스딘 순면 V넥 남성 민소매 머슬 런닝 2_110 도도shop'

Evaluation

Metrics

Label Metric
all 0.8999

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_item_ap")
# Run inference
preds = model("언더아머 야구 점퍼 1375292-400 S 슈즈스타11")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 3 9.6403 24
Label Training Sample Count
0.0 300
1.0 809
2.0 457
3.0 1050

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0024 1 0.4029 -
0.1222 50 0.3584 -
0.2445 100 0.2822 -
0.3667 150 0.2453 -
0.4890 200 0.1961 -
0.6112 250 0.1677 -
0.7335 300 0.1175 -
0.8557 350 0.0615 -
0.9780 400 0.0308 -
1.1002 450 0.0218 -
1.2225 500 0.0133 -
1.3447 550 0.0058 -
1.4670 600 0.0101 -
1.5892 650 0.002 -
1.7115 700 0.0022 -
1.8337 750 0.0023 -
1.9560 800 0.0041 -
2.0782 850 0.0057 -
2.2005 900 0.0001 -
2.3227 950 0.0029 -
2.4450 1000 0.0032 -
2.5672 1050 0.004 -
2.6895 1100 0.0021 -
2.8117 1150 0.0033 -
2.9340 1200 0.002 -
3.0562 1250 0.002 -
3.1785 1300 0.0019 -
3.3007 1350 0.0 -
3.4230 1400 0.0019 -
3.5452 1450 0.0 -
3.6675 1500 0.0039 -
3.7897 1550 0.0 -
3.9120 1600 0.0 -
4.0342 1650 0.0002 -
4.1565 1700 0.0049 -
4.2787 1750 0.002 -
4.4010 1800 0.0 -
4.5232 1850 0.0026 -
4.6455 1900 0.0 -
4.7677 1950 0.0 -
4.8900 2000 0.0001 -
5.0122 2050 0.002 -
5.1345 2100 0.002 -
5.2567 2150 0.0 -
5.3790 2200 0.0 -
5.5012 2250 0.0 -
5.6235 2300 0.0 -
5.7457 2350 0.0004 -
5.8680 2400 0.0019 -
5.9902 2450 0.0018 -
6.1125 2500 0.0 -
6.2347 2550 0.0 -
6.3570 2600 0.0 -
6.4792 2650 0.0 -
6.6015 2700 0.002 -
6.7237 2750 0.0009 -
6.8460 2800 0.0 -
6.9682 2850 0.0015 -
7.0905 2900 0.0001 -
7.2127 2950 0.0001 -
7.3350 3000 0.002 -
7.4572 3050 0.0001 -
7.5795 3100 0.0001 -
7.7017 3150 0.0019 -
7.8240 3200 0.0019 -
7.9462 3250 0.0 -
8.0685 3300 0.0001 -
8.1907 3350 0.0038 -
8.3130 3400 0.0 -
8.4352 3450 0.0018 -
8.5575 3500 0.0 -
8.6797 3550 0.0019 -
8.8020 3600 0.0 -
8.9242 3650 0.0 -
9.0465 3700 0.0 -
9.1687 3750 0.0 -
9.2910 3800 0.0 -
9.4132 3850 0.0001 -
9.5355 3900 0.0 -
9.6577 3950 0.0019 -
9.7800 4000 0.0019 -
9.9022 4050 0.0 -
10.0244 4100 0.0001 -
10.1467 4150 0.0 -
10.2689 4200 0.002 -
10.3912 4250 0.0 -
10.5134 4300 0.0 -
10.6357 4350 0.0 -
10.7579 4400 0.0 -
10.8802 4450 0.0 -
11.0024 4500 0.0 -
11.1247 4550 0.0018 -
11.2469 4600 0.0 -
11.3692 4650 0.0 -
11.4914 4700 0.0 -
11.6137 4750 0.0 -
11.7359 4800 0.0019 -
11.8582 4850 0.001 -
11.9804 4900 0.0 -
12.1027 4950 0.0001 -
12.2249 5000 0.0 -
12.3472 5050 0.0 -
12.4694 5100 0.0 -
12.5917 5150 0.0 -
12.7139 5200 0.0 -
12.8362 5250 0.0 -
12.9584 5300 0.0 -
13.0807 5350 0.0001 -
13.2029 5400 0.0001 -
13.3252 5450 0.0 -
13.4474 5500 0.0001 -
13.5697 5550 0.0 -
13.6919 5600 0.0 -
13.8142 5650 0.0 -
13.9364 5700 0.0 -
14.0587 5750 0.0001 -
14.1809 5800 0.0 -
14.3032 5850 0.0 -
14.4254 5900 0.0 -
14.5477 5950 0.0 -
14.6699 6000 0.0 -
14.7922 6050 0.0 -
14.9144 6100 0.0 -
15.0367 6150 0.0 -
15.1589 6200 0.0 -
15.2812 6250 0.0 -
15.4034 6300 0.0 -
15.5257 6350 0.0 -
15.6479 6400 0.0 -
15.7702 6450 0.0 -
15.8924 6500 0.0 -
16.0147 6550 0.0 -
16.1369 6600 0.0 -
16.2592 6650 0.0 -
16.3814 6700 0.0 -
16.5037 6750 0.0 -
16.6259 6800 0.0 -
16.7482 6850 0.0 -
16.8704 6900 0.0 -
16.9927 6950 0.0 -
17.1149 7000 0.0 -
17.2372 7050 0.0 -
17.3594 7100 0.0 -
17.4817 7150 0.0 -
17.6039 7200 0.0 -
17.7262 7250 0.0 -
17.8484 7300 0.0 -
17.9707 7350 0.0 -
18.0929 7400 0.0 -
18.2152 7450 0.0 -
18.3374 7500 0.0 -
18.4597 7550 0.0 -
18.5819 7600 0.0 -
18.7042 7650 0.0 -
18.8264 7700 0.0 -
18.9487 7750 0.0 -
19.0709 7800 0.0 -
19.1932 7850 0.0 -
19.3154 7900 0.0 -
19.4377 7950 0.0 -
19.5599 8000 0.0 -
19.6822 8050 0.0 -
19.8044 8100 0.0 -
19.9267 8150 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
309
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mini1013/master_item_ap

Base model

klue/roberta-base
Finetuned
(184)
this model

Evaluation results