SetFit with klue/roberta-base
This is a SetFit model that can be used for Text Classification. This SetFit model uses klue/roberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: klue/roberta-base
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 4 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
1.0 |
|
2.0 |
|
3.0 |
|
0.0 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.8999 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_item_ap")
# Run inference
preds = model("언더아머 야구 점퍼 1375292-400 S 슈즈스타11")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 9.6403 | 24 |
Label | Training Sample Count |
---|---|
0.0 | 300 |
1.0 | 809 |
2.0 | 457 |
3.0 | 1050 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0024 | 1 | 0.4029 | - |
0.1222 | 50 | 0.3584 | - |
0.2445 | 100 | 0.2822 | - |
0.3667 | 150 | 0.2453 | - |
0.4890 | 200 | 0.1961 | - |
0.6112 | 250 | 0.1677 | - |
0.7335 | 300 | 0.1175 | - |
0.8557 | 350 | 0.0615 | - |
0.9780 | 400 | 0.0308 | - |
1.1002 | 450 | 0.0218 | - |
1.2225 | 500 | 0.0133 | - |
1.3447 | 550 | 0.0058 | - |
1.4670 | 600 | 0.0101 | - |
1.5892 | 650 | 0.002 | - |
1.7115 | 700 | 0.0022 | - |
1.8337 | 750 | 0.0023 | - |
1.9560 | 800 | 0.0041 | - |
2.0782 | 850 | 0.0057 | - |
2.2005 | 900 | 0.0001 | - |
2.3227 | 950 | 0.0029 | - |
2.4450 | 1000 | 0.0032 | - |
2.5672 | 1050 | 0.004 | - |
2.6895 | 1100 | 0.0021 | - |
2.8117 | 1150 | 0.0033 | - |
2.9340 | 1200 | 0.002 | - |
3.0562 | 1250 | 0.002 | - |
3.1785 | 1300 | 0.0019 | - |
3.3007 | 1350 | 0.0 | - |
3.4230 | 1400 | 0.0019 | - |
3.5452 | 1450 | 0.0 | - |
3.6675 | 1500 | 0.0039 | - |
3.7897 | 1550 | 0.0 | - |
3.9120 | 1600 | 0.0 | - |
4.0342 | 1650 | 0.0002 | - |
4.1565 | 1700 | 0.0049 | - |
4.2787 | 1750 | 0.002 | - |
4.4010 | 1800 | 0.0 | - |
4.5232 | 1850 | 0.0026 | - |
4.6455 | 1900 | 0.0 | - |
4.7677 | 1950 | 0.0 | - |
4.8900 | 2000 | 0.0001 | - |
5.0122 | 2050 | 0.002 | - |
5.1345 | 2100 | 0.002 | - |
5.2567 | 2150 | 0.0 | - |
5.3790 | 2200 | 0.0 | - |
5.5012 | 2250 | 0.0 | - |
5.6235 | 2300 | 0.0 | - |
5.7457 | 2350 | 0.0004 | - |
5.8680 | 2400 | 0.0019 | - |
5.9902 | 2450 | 0.0018 | - |
6.1125 | 2500 | 0.0 | - |
6.2347 | 2550 | 0.0 | - |
6.3570 | 2600 | 0.0 | - |
6.4792 | 2650 | 0.0 | - |
6.6015 | 2700 | 0.002 | - |
6.7237 | 2750 | 0.0009 | - |
6.8460 | 2800 | 0.0 | - |
6.9682 | 2850 | 0.0015 | - |
7.0905 | 2900 | 0.0001 | - |
7.2127 | 2950 | 0.0001 | - |
7.3350 | 3000 | 0.002 | - |
7.4572 | 3050 | 0.0001 | - |
7.5795 | 3100 | 0.0001 | - |
7.7017 | 3150 | 0.0019 | - |
7.8240 | 3200 | 0.0019 | - |
7.9462 | 3250 | 0.0 | - |
8.0685 | 3300 | 0.0001 | - |
8.1907 | 3350 | 0.0038 | - |
8.3130 | 3400 | 0.0 | - |
8.4352 | 3450 | 0.0018 | - |
8.5575 | 3500 | 0.0 | - |
8.6797 | 3550 | 0.0019 | - |
8.8020 | 3600 | 0.0 | - |
8.9242 | 3650 | 0.0 | - |
9.0465 | 3700 | 0.0 | - |
9.1687 | 3750 | 0.0 | - |
9.2910 | 3800 | 0.0 | - |
9.4132 | 3850 | 0.0001 | - |
9.5355 | 3900 | 0.0 | - |
9.6577 | 3950 | 0.0019 | - |
9.7800 | 4000 | 0.0019 | - |
9.9022 | 4050 | 0.0 | - |
10.0244 | 4100 | 0.0001 | - |
10.1467 | 4150 | 0.0 | - |
10.2689 | 4200 | 0.002 | - |
10.3912 | 4250 | 0.0 | - |
10.5134 | 4300 | 0.0 | - |
10.6357 | 4350 | 0.0 | - |
10.7579 | 4400 | 0.0 | - |
10.8802 | 4450 | 0.0 | - |
11.0024 | 4500 | 0.0 | - |
11.1247 | 4550 | 0.0018 | - |
11.2469 | 4600 | 0.0 | - |
11.3692 | 4650 | 0.0 | - |
11.4914 | 4700 | 0.0 | - |
11.6137 | 4750 | 0.0 | - |
11.7359 | 4800 | 0.0019 | - |
11.8582 | 4850 | 0.001 | - |
11.9804 | 4900 | 0.0 | - |
12.1027 | 4950 | 0.0001 | - |
12.2249 | 5000 | 0.0 | - |
12.3472 | 5050 | 0.0 | - |
12.4694 | 5100 | 0.0 | - |
12.5917 | 5150 | 0.0 | - |
12.7139 | 5200 | 0.0 | - |
12.8362 | 5250 | 0.0 | - |
12.9584 | 5300 | 0.0 | - |
13.0807 | 5350 | 0.0001 | - |
13.2029 | 5400 | 0.0001 | - |
13.3252 | 5450 | 0.0 | - |
13.4474 | 5500 | 0.0001 | - |
13.5697 | 5550 | 0.0 | - |
13.6919 | 5600 | 0.0 | - |
13.8142 | 5650 | 0.0 | - |
13.9364 | 5700 | 0.0 | - |
14.0587 | 5750 | 0.0001 | - |
14.1809 | 5800 | 0.0 | - |
14.3032 | 5850 | 0.0 | - |
14.4254 | 5900 | 0.0 | - |
14.5477 | 5950 | 0.0 | - |
14.6699 | 6000 | 0.0 | - |
14.7922 | 6050 | 0.0 | - |
14.9144 | 6100 | 0.0 | - |
15.0367 | 6150 | 0.0 | - |
15.1589 | 6200 | 0.0 | - |
15.2812 | 6250 | 0.0 | - |
15.4034 | 6300 | 0.0 | - |
15.5257 | 6350 | 0.0 | - |
15.6479 | 6400 | 0.0 | - |
15.7702 | 6450 | 0.0 | - |
15.8924 | 6500 | 0.0 | - |
16.0147 | 6550 | 0.0 | - |
16.1369 | 6600 | 0.0 | - |
16.2592 | 6650 | 0.0 | - |
16.3814 | 6700 | 0.0 | - |
16.5037 | 6750 | 0.0 | - |
16.6259 | 6800 | 0.0 | - |
16.7482 | 6850 | 0.0 | - |
16.8704 | 6900 | 0.0 | - |
16.9927 | 6950 | 0.0 | - |
17.1149 | 7000 | 0.0 | - |
17.2372 | 7050 | 0.0 | - |
17.3594 | 7100 | 0.0 | - |
17.4817 | 7150 | 0.0 | - |
17.6039 | 7200 | 0.0 | - |
17.7262 | 7250 | 0.0 | - |
17.8484 | 7300 | 0.0 | - |
17.9707 | 7350 | 0.0 | - |
18.0929 | 7400 | 0.0 | - |
18.2152 | 7450 | 0.0 | - |
18.3374 | 7500 | 0.0 | - |
18.4597 | 7550 | 0.0 | - |
18.5819 | 7600 | 0.0 | - |
18.7042 | 7650 | 0.0 | - |
18.8264 | 7700 | 0.0 | - |
18.9487 | 7750 | 0.0 | - |
19.0709 | 7800 | 0.0 | - |
19.1932 | 7850 | 0.0 | - |
19.3154 | 7900 | 0.0 | - |
19.4377 | 7950 | 0.0 | - |
19.5599 | 8000 | 0.0 | - |
19.6822 | 8050 | 0.0 | - |
19.8044 | 8100 | 0.0 | - |
19.9267 | 8150 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 309
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for mini1013/master_item_ap
Base model
klue/roberta-base