SetFit with klue/roberta-base
This is a SetFit model that can be used for Text Classification. This SetFit model uses klue/roberta-base as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: klue/roberta-base
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 100 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
42 |
|
60 |
|
1 |
|
68 |
|
52 |
|
33 |
|
71 |
|
48 |
|
18 |
|
38 |
|
98 |
|
87 |
|
47 |
|
67 |
|
96 |
|
22 |
|
30 |
|
24 |
|
79 |
|
80 |
|
23 |
|
50 |
|
5 |
|
19 |
|
55 |
|
7 |
|
64 |
|
9 |
|
74 |
|
90 |
|
40 |
|
92 |
|
59 |
|
29 |
|
70 |
|
56 |
|
13 |
|
82 |
|
58 |
|
25 |
|
37 |
|
78 |
|
27 |
|
66 |
|
41 |
|
16 |
|
76 |
|
73 |
|
86 |
|
83 |
|
17 |
|
85 |
|
63 |
|
51 |
|
89 |
|
28 |
|
8 |
|
46 |
|
75 |
|
15 |
|
81 |
|
61 |
|
21 |
|
72 |
|
31 |
|
84 |
|
11 |
|
99 |
|
43 |
|
91 |
|
49 |
|
53 |
|
26 |
|
77 |
|
94 |
|
2 |
|
12 |
|
93 |
|
35 |
|
54 |
|
45 |
|
6 |
|
39 |
|
0 |
|
65 |
|
4 |
|
95 |
|
88 |
|
20 |
|
62 |
|
3 |
|
32 |
|
10 |
|
69 |
|
14 |
|
34 |
|
36 |
|
44 |
|
97 |
|
57 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.854 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_item_bt_test_org_allcate")
# Run inference
preds = model("러쉬 배쓰밤 20종 러쉬 입욕제 티스티 토스티 (#M)홈>러쉬 Naverstore > 화장품/미용 > 바디케어 > 입욕제")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 10 | 23.0575 | 125 |
Label | Training Sample Count |
---|---|
0 | 50 |
1 | 50 |
2 | 50 |
3 | 50 |
4 | 50 |
5 | 50 |
6 | 50 |
7 | 46 |
8 | 50 |
9 | 50 |
10 | 50 |
11 | 50 |
12 | 50 |
13 | 49 |
14 | 50 |
15 | 50 |
16 | 50 |
17 | 50 |
18 | 50 |
19 | 50 |
20 | 50 |
21 | 50 |
22 | 50 |
23 | 50 |
24 | 50 |
25 | 50 |
26 | 50 |
27 | 50 |
28 | 50 |
29 | 50 |
30 | 50 |
31 | 50 |
32 | 50 |
33 | 50 |
34 | 50 |
35 | 50 |
36 | 50 |
37 | 50 |
38 | 50 |
39 | 50 |
40 | 50 |
41 | 50 |
42 | 50 |
43 | 50 |
44 | 50 |
45 | 50 |
46 | 50 |
47 | 50 |
48 | 50 |
49 | 50 |
50 | 50 |
51 | 50 |
52 | 50 |
53 | 50 |
54 | 50 |
55 | 50 |
56 | 50 |
57 | 50 |
58 | 50 |
59 | 50 |
60 | 49 |
61 | 50 |
62 | 50 |
63 | 50 |
64 | 50 |
65 | 50 |
66 | 50 |
67 | 50 |
68 | 50 |
69 | 50 |
70 | 50 |
71 | 50 |
72 | 50 |
73 | 50 |
74 | 50 |
75 | 50 |
76 | 50 |
77 | 50 |
78 | 50 |
79 | 50 |
80 | 50 |
81 | 50 |
82 | 50 |
83 | 50 |
84 | 50 |
85 | 50 |
86 | 50 |
87 | 50 |
88 | 50 |
89 | 50 |
90 | 50 |
91 | 50 |
92 | 50 |
93 | 50 |
94 | 50 |
95 | 50 |
96 | 50 |
97 | 50 |
98 | 50 |
99 | 50 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 30
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0004 | 1 | 0.4519 | - |
0.0214 | 50 | 0.4285 | - |
0.0427 | 100 | 0.4177 | - |
0.0641 | 150 | 0.3848 | - |
0.0854 | 200 | 0.3587 | - |
0.1068 | 250 | 0.3257 | - |
0.1282 | 300 | 0.2752 | - |
0.1495 | 350 | 0.2489 | - |
0.1709 | 400 | 0.2172 | - |
0.1922 | 450 | 0.1901 | - |
0.2136 | 500 | 0.1643 | - |
0.2349 | 550 | 0.1478 | - |
0.2563 | 600 | 0.1345 | - |
0.2777 | 650 | 0.1151 | - |
0.2990 | 700 | 0.1073 | - |
0.3204 | 750 | 0.1002 | - |
0.3417 | 800 | 0.0929 | - |
0.3631 | 850 | 0.0902 | - |
0.3845 | 900 | 0.0857 | - |
0.4058 | 950 | 0.0749 | - |
0.4272 | 1000 | 0.0756 | - |
0.4485 | 1050 | 0.0665 | - |
0.4699 | 1100 | 0.0659 | - |
0.4912 | 1150 | 0.0604 | - |
0.5126 | 1200 | 0.0561 | - |
0.5340 | 1250 | 0.0555 | - |
0.5553 | 1300 | 0.0499 | - |
0.5767 | 1350 | 0.0505 | - |
0.5980 | 1400 | 0.0492 | - |
0.6194 | 1450 | 0.0478 | - |
0.6408 | 1500 | 0.0429 | - |
0.6621 | 1550 | 0.0419 | - |
0.6835 | 1600 | 0.04 | - |
0.7048 | 1650 | 0.0376 | - |
0.7262 | 1700 | 0.0385 | - |
0.7475 | 1750 | 0.0368 | - |
0.7689 | 1800 | 0.0345 | - |
0.7903 | 1850 | 0.0322 | - |
0.8116 | 1900 | 0.0333 | - |
0.8330 | 1950 | 0.03 | - |
0.8543 | 2000 | 0.0301 | - |
0.8757 | 2050 | 0.0321 | - |
0.8971 | 2100 | 0.0293 | - |
0.9184 | 2150 | 0.0299 | - |
0.9398 | 2200 | 0.0289 | - |
0.9611 | 2250 | 0.0273 | - |
0.9825 | 2300 | 0.0269 | - |
1.0038 | 2350 | 0.0272 | - |
1.0252 | 2400 | 0.0275 | - |
1.0466 | 2450 | 0.0263 | - |
1.0679 | 2500 | 0.024 | - |
1.0893 | 2550 | 0.0243 | - |
1.1106 | 2600 | 0.0213 | - |
1.1320 | 2650 | 0.0227 | - |
1.1534 | 2700 | 0.0204 | - |
1.1747 | 2750 | 0.0243 | - |
1.1961 | 2800 | 0.0256 | - |
1.2174 | 2850 | 0.0209 | - |
1.2388 | 2900 | 0.0231 | - |
1.2601 | 2950 | 0.0252 | - |
1.2815 | 3000 | 0.0208 | - |
1.3029 | 3050 | 0.0219 | - |
1.3242 | 3100 | 0.0218 | - |
1.3456 | 3150 | 0.022 | - |
1.3669 | 3200 | 0.0208 | - |
1.3883 | 3250 | 0.0205 | - |
1.4097 | 3300 | 0.0198 | - |
1.4310 | 3350 | 0.0184 | - |
1.4524 | 3400 | 0.0176 | - |
1.4737 | 3450 | 0.0178 | - |
1.4951 | 3500 | 0.0179 | - |
1.5164 | 3550 | 0.0147 | - |
1.5378 | 3600 | 0.0168 | - |
1.5592 | 3650 | 0.0183 | - |
1.5805 | 3700 | 0.0183 | - |
1.6019 | 3750 | 0.0173 | - |
1.6232 | 3800 | 0.0182 | - |
1.6446 | 3850 | 0.0165 | - |
1.6660 | 3900 | 0.0165 | - |
1.6873 | 3950 | 0.0158 | - |
1.7087 | 4000 | 0.0151 | - |
1.7300 | 4050 | 0.017 | - |
1.7514 | 4100 | 0.0152 | - |
1.7727 | 4150 | 0.0144 | - |
1.7941 | 4200 | 0.015 | - |
1.8155 | 4250 | 0.0133 | - |
1.8368 | 4300 | 0.0143 | - |
1.8582 | 4350 | 0.0139 | - |
1.8795 | 4400 | 0.0119 | - |
1.9009 | 4450 | 0.016 | - |
1.9223 | 4500 | 0.0119 | - |
1.9436 | 4550 | 0.0116 | - |
1.9650 | 4600 | 0.0111 | - |
1.9863 | 4650 | 0.0129 | - |
2.0077 | 4700 | 0.0126 | - |
2.0290 | 4750 | 0.0116 | - |
2.0504 | 4800 | 0.0095 | - |
2.0718 | 4850 | 0.0088 | - |
2.0931 | 4900 | 0.0086 | - |
2.1145 | 4950 | 0.0085 | - |
2.1358 | 5000 | 0.0101 | - |
2.1572 | 5050 | 0.0093 | - |
2.1786 | 5100 | 0.0105 | - |
2.1999 | 5150 | 0.0103 | - |
2.2213 | 5200 | 0.0086 | - |
2.2426 | 5250 | 0.0091 | - |
2.2640 | 5300 | 0.011 | - |
2.2853 | 5350 | 0.0092 | - |
2.3067 | 5400 | 0.0083 | - |
2.3281 | 5450 | 0.0092 | - |
2.3494 | 5500 | 0.0083 | - |
2.3708 | 5550 | 0.0085 | - |
2.3921 | 5600 | 0.0068 | - |
2.4135 | 5650 | 0.0081 | - |
2.4349 | 5700 | 0.0083 | - |
2.4562 | 5750 | 0.0073 | - |
2.4776 | 5800 | 0.0083 | - |
2.4989 | 5850 | 0.0069 | - |
2.5203 | 5900 | 0.0062 | - |
2.5416 | 5950 | 0.0067 | - |
2.5630 | 6000 | 0.008 | - |
2.5844 | 6050 | 0.008 | - |
2.6057 | 6100 | 0.0072 | - |
2.6271 | 6150 | 0.0063 | - |
2.6484 | 6200 | 0.0079 | - |
2.6698 | 6250 | 0.0086 | - |
2.6912 | 6300 | 0.0083 | - |
2.7125 | 6350 | 0.0076 | - |
2.7339 | 6400 | 0.0069 | - |
2.7552 | 6450 | 0.0084 | - |
2.7766 | 6500 | 0.0092 | - |
2.7979 | 6550 | 0.0068 | - |
2.8193 | 6600 | 0.0062 | - |
2.8407 | 6650 | 0.0064 | - |
2.8620 | 6700 | 0.0077 | - |
2.8834 | 6750 | 0.0053 | - |
2.9047 | 6800 | 0.0062 | - |
2.9261 | 6850 | 0.0066 | - |
2.9475 | 6900 | 0.0076 | - |
2.9688 | 6950 | 0.0052 | - |
2.9902 | 7000 | 0.0072 | - |
3.0115 | 7050 | 0.0073 | - |
3.0329 | 7100 | 0.0047 | - |
3.0543 | 7150 | 0.0055 | - |
3.0756 | 7200 | 0.0052 | - |
3.0970 | 7250 | 0.0048 | - |
3.1183 | 7300 | 0.0065 | - |
3.1397 | 7350 | 0.0059 | - |
3.1610 | 7400 | 0.0046 | - |
3.1824 | 7450 | 0.0047 | - |
3.2038 | 7500 | 0.0049 | - |
3.2251 | 7550 | 0.005 | - |
3.2465 | 7600 | 0.006 | - |
3.2678 | 7650 | 0.0055 | - |
3.2892 | 7700 | 0.0058 | - |
3.3106 | 7750 | 0.0048 | - |
3.3319 | 7800 | 0.0045 | - |
3.3533 | 7850 | 0.0047 | - |
3.3746 | 7900 | 0.0042 | - |
3.3960 | 7950 | 0.0052 | - |
3.4173 | 8000 | 0.0034 | - |
3.4387 | 8050 | 0.004 | - |
3.4601 | 8100 | 0.0029 | - |
3.4814 | 8150 | 0.0036 | - |
3.5028 | 8200 | 0.0049 | - |
3.5241 | 8250 | 0.0045 | - |
3.5455 | 8300 | 0.0038 | - |
3.5669 | 8350 | 0.0038 | - |
3.5882 | 8400 | 0.0043 | - |
3.6096 | 8450 | 0.0025 | - |
3.6309 | 8500 | 0.0048 | - |
3.6523 | 8550 | 0.004 | - |
3.6736 | 8600 | 0.004 | - |
3.6950 | 8650 | 0.0037 | - |
3.7164 | 8700 | 0.0037 | - |
3.7377 | 8750 | 0.0041 | - |
3.7591 | 8800 | 0.003 | - |
3.7804 | 8850 | 0.0036 | - |
3.8018 | 8900 | 0.0031 | - |
3.8232 | 8950 | 0.0032 | - |
3.8445 | 9000 | 0.0035 | - |
3.8659 | 9050 | 0.0035 | - |
3.8872 | 9100 | 0.0027 | - |
3.9086 | 9150 | 0.0031 | - |
3.9299 | 9200 | 0.0038 | - |
3.9513 | 9250 | 0.0032 | - |
3.9727 | 9300 | 0.0032 | - |
3.9940 | 9350 | 0.0032 | - |
4.0154 | 9400 | 0.0031 | - |
4.0367 | 9450 | 0.0023 | - |
4.0581 | 9500 | 0.0028 | - |
4.0795 | 9550 | 0.0029 | - |
4.1008 | 9600 | 0.0031 | - |
4.1222 | 9650 | 0.0024 | - |
4.1435 | 9700 | 0.0034 | - |
4.1649 | 9750 | 0.0031 | - |
4.1862 | 9800 | 0.0036 | - |
4.2076 | 9850 | 0.0042 | - |
4.2290 | 9900 | 0.0044 | - |
4.2503 | 9950 | 0.0034 | - |
4.2717 | 10000 | 0.0044 | - |
4.2930 | 10050 | 0.0038 | - |
4.3144 | 10100 | 0.0044 | - |
4.3358 | 10150 | 0.0039 | - |
4.3571 | 10200 | 0.0049 | - |
4.3785 | 10250 | 0.004 | - |
4.3998 | 10300 | 0.0031 | - |
4.4212 | 10350 | 0.0021 | - |
4.4425 | 10400 | 0.0025 | - |
4.4639 | 10450 | 0.0032 | - |
4.4853 | 10500 | 0.003 | - |
4.5066 | 10550 | 0.0027 | - |
4.5280 | 10600 | 0.0019 | - |
4.5493 | 10650 | 0.002 | - |
4.5707 | 10700 | 0.0026 | - |
4.5921 | 10750 | 0.0025 | - |
4.6134 | 10800 | 0.0028 | - |
4.6348 | 10850 | 0.0021 | - |
4.6561 | 10900 | 0.0031 | - |
4.6775 | 10950 | 0.0017 | - |
4.6988 | 11000 | 0.003 | - |
4.7202 | 11050 | 0.0036 | - |
4.7416 | 11100 | 0.0024 | - |
4.7629 | 11150 | 0.0017 | - |
4.7843 | 11200 | 0.0024 | - |
4.8056 | 11250 | 0.0016 | - |
4.8270 | 11300 | 0.0021 | - |
4.8484 | 11350 | 0.0022 | - |
4.8697 | 11400 | 0.0024 | - |
4.8911 | 11450 | 0.004 | - |
4.9124 | 11500 | 0.003 | - |
4.9338 | 11550 | 0.0032 | - |
4.9551 | 11600 | 0.0024 | - |
4.9765 | 11650 | 0.0016 | - |
4.9979 | 11700 | 0.002 | - |
5.0192 | 11750 | 0.0024 | - |
5.0406 | 11800 | 0.0022 | - |
5.0619 | 11850 | 0.0018 | - |
5.0833 | 11900 | 0.0015 | - |
5.1047 | 11950 | 0.0023 | - |
5.1260 | 12000 | 0.0021 | - |
5.1474 | 12050 | 0.0015 | - |
5.1687 | 12100 | 0.002 | - |
5.1901 | 12150 | 0.0014 | - |
5.2114 | 12200 | 0.0011 | - |
5.2328 | 12250 | 0.0016 | - |
5.2542 | 12300 | 0.0019 | - |
5.2755 | 12350 | 0.0019 | - |
5.2969 | 12400 | 0.0027 | - |
5.3182 | 12450 | 0.0013 | - |
5.3396 | 12500 | 0.0023 | - |
5.3610 | 12550 | 0.0015 | - |
5.3823 | 12600 | 0.0026 | - |
5.4037 | 12650 | 0.0014 | - |
5.4250 | 12700 | 0.0016 | - |
5.4464 | 12750 | 0.0017 | - |
5.4677 | 12800 | 0.0013 | - |
5.4891 | 12850 | 0.002 | - |
5.5105 | 12900 | 0.0028 | - |
5.5318 | 12950 | 0.0021 | - |
5.5532 | 13000 | 0.0028 | - |
5.5745 | 13050 | 0.0016 | - |
5.5959 | 13100 | 0.0012 | - |
5.6173 | 13150 | 0.0031 | - |
5.6386 | 13200 | 0.0023 | - |
5.6600 | 13250 | 0.0017 | - |
5.6813 | 13300 | 0.0016 | - |
5.7027 | 13350 | 0.0018 | - |
5.7240 | 13400 | 0.0028 | - |
5.7454 | 13450 | 0.0029 | - |
5.7668 | 13500 | 0.0013 | - |
5.7881 | 13550 | 0.0012 | - |
5.8095 | 13600 | 0.0017 | - |
5.8308 | 13650 | 0.001 | - |
5.8522 | 13700 | 0.0017 | - |
5.8736 | 13750 | 0.0019 | - |
5.8949 | 13800 | 0.0013 | - |
5.9163 | 13850 | 0.001 | - |
5.9376 | 13900 | 0.0015 | - |
5.9590 | 13950 | 0.0013 | - |
5.9804 | 14000 | 0.0012 | - |
6.0017 | 14050 | 0.0013 | - |
6.0231 | 14100 | 0.0006 | - |
6.0444 | 14150 | 0.0013 | - |
6.0658 | 14200 | 0.0013 | - |
6.0871 | 14250 | 0.0012 | - |
6.1085 | 14300 | 0.0009 | - |
6.1299 | 14350 | 0.0013 | - |
6.1512 | 14400 | 0.0015 | - |
6.1726 | 14450 | 0.004 | - |
6.1939 | 14500 | 0.0038 | - |
6.2153 | 14550 | 0.0026 | - |
6.2367 | 14600 | 0.002 | - |
6.2580 | 14650 | 0.0017 | - |
6.2794 | 14700 | 0.002 | - |
6.3007 | 14750 | 0.0016 | - |
6.3221 | 14800 | 0.0013 | - |
6.3434 | 14850 | 0.001 | - |
6.3648 | 14900 | 0.002 | - |
6.3862 | 14950 | 0.0021 | - |
6.4075 | 15000 | 0.0012 | - |
6.4289 | 15050 | 0.0009 | - |
6.4502 | 15100 | 0.0013 | - |
6.4716 | 15150 | 0.0015 | - |
6.4930 | 15200 | 0.0005 | - |
6.5143 | 15250 | 0.0013 | - |
6.5357 | 15300 | 0.0013 | - |
6.5570 | 15350 | 0.0009 | - |
6.5784 | 15400 | 0.0014 | - |
6.5997 | 15450 | 0.0009 | - |
6.6211 | 15500 | 0.0015 | - |
6.6425 | 15550 | 0.0014 | - |
6.6638 | 15600 | 0.0015 | - |
6.6852 | 15650 | 0.0021 | - |
6.7065 | 15700 | 0.0021 | - |
6.7279 | 15750 | 0.0013 | - |
6.7493 | 15800 | 0.0018 | - |
6.7706 | 15850 | 0.0017 | - |
6.7920 | 15900 | 0.0016 | - |
6.8133 | 15950 | 0.0014 | - |
6.8347 | 16000 | 0.001 | - |
6.8560 | 16050 | 0.0013 | - |
6.8774 | 16100 | 0.0005 | - |
6.8988 | 16150 | 0.0009 | - |
6.9201 | 16200 | 0.0015 | - |
6.9415 | 16250 | 0.0014 | - |
6.9628 | 16300 | 0.0029 | - |
6.9842 | 16350 | 0.0024 | - |
7.0056 | 16400 | 0.0016 | - |
7.0269 | 16450 | 0.0012 | - |
7.0483 | 16500 | 0.0013 | - |
7.0696 | 16550 | 0.0014 | - |
7.0910 | 16600 | 0.0007 | - |
7.1123 | 16650 | 0.0018 | - |
7.1337 | 16700 | 0.0007 | - |
7.1551 | 16750 | 0.0009 | - |
7.1764 | 16800 | 0.0011 | - |
7.1978 | 16850 | 0.0007 | - |
7.2191 | 16900 | 0.0009 | - |
7.2405 | 16950 | 0.0006 | - |
7.2619 | 17000 | 0.0014 | - |
7.2832 | 17050 | 0.0009 | - |
7.3046 | 17100 | 0.0007 | - |
7.3259 | 17150 | 0.0009 | - |
7.3473 | 17200 | 0.0007 | - |
7.3686 | 17250 | 0.0006 | - |
7.3900 | 17300 | 0.0011 | - |
7.4114 | 17350 | 0.0003 | - |
7.4327 | 17400 | 0.0004 | - |
7.4541 | 17450 | 0.0004 | - |
7.4754 | 17500 | 0.0006 | - |
7.4968 | 17550 | 0.0005 | - |
7.5182 | 17600 | 0.0014 | - |
7.5395 | 17650 | 0.001 | - |
7.5609 | 17700 | 0.0005 | - |
7.5822 | 17750 | 0.0009 | - |
7.6036 | 17800 | 0.0005 | - |
7.6249 | 17850 | 0.0009 | - |
7.6463 | 17900 | 0.0006 | - |
7.6677 | 17950 | 0.0003 | - |
7.6890 | 18000 | 0.0007 | - |
7.7104 | 18050 | 0.001 | - |
7.7317 | 18100 | 0.001 | - |
7.7531 | 18150 | 0.0011 | - |
7.7745 | 18200 | 0.0007 | - |
7.7958 | 18250 | 0.0007 | - |
7.8172 | 18300 | 0.0008 | - |
7.8385 | 18350 | 0.0012 | - |
7.8599 | 18400 | 0.0015 | - |
7.8812 | 18450 | 0.001 | - |
7.9026 | 18500 | 0.0009 | - |
7.9240 | 18550 | 0.0005 | - |
7.9453 | 18600 | 0.0007 | - |
7.9667 | 18650 | 0.0006 | - |
7.9880 | 18700 | 0.0008 | - |
8.0094 | 18750 | 0.0003 | - |
8.0308 | 18800 | 0.0008 | - |
8.0521 | 18850 | 0.0003 | - |
8.0735 | 18900 | 0.0009 | - |
8.0948 | 18950 | 0.0012 | - |
8.1162 | 19000 | 0.0007 | - |
8.1375 | 19050 | 0.001 | - |
8.1589 | 19100 | 0.0009 | - |
8.1803 | 19150 | 0.0014 | - |
8.2016 | 19200 | 0.0008 | - |
8.2230 | 19250 | 0.0009 | - |
8.2443 | 19300 | 0.0007 | - |
8.2657 | 19350 | 0.0008 | - |
8.2871 | 19400 | 0.001 | - |
8.3084 | 19450 | 0.0009 | - |
8.3298 | 19500 | 0.0008 | - |
8.3511 | 19550 | 0.0013 | - |
8.3725 | 19600 | 0.0014 | - |
8.3938 | 19650 | 0.0009 | - |
8.4152 | 19700 | 0.0009 | - |
8.4366 | 19750 | 0.0006 | - |
8.4579 | 19800 | 0.0011 | - |
8.4793 | 19850 | 0.0002 | - |
8.5006 | 19900 | 0.0008 | - |
8.5220 | 19950 | 0.0008 | - |
8.5434 | 20000 | 0.0009 | - |
8.5647 | 20050 | 0.0006 | - |
8.5861 | 20100 | 0.0006 | - |
8.6074 | 20150 | 0.0009 | - |
8.6288 | 20200 | 0.0006 | - |
8.6501 | 20250 | 0.0004 | - |
8.6715 | 20300 | 0.0002 | - |
8.6929 | 20350 | 0.0004 | - |
8.7142 | 20400 | 0.0009 | - |
8.7356 | 20450 | 0.0005 | - |
8.7569 | 20500 | 0.0006 | - |
8.7783 | 20550 | 0.0006 | - |
8.7997 | 20600 | 0.0009 | - |
8.8210 | 20650 | 0.0011 | - |
8.8424 | 20700 | 0.0005 | - |
8.8637 | 20750 | 0.0008 | - |
8.8851 | 20800 | 0.0011 | - |
8.9065 | 20850 | 0.0012 | - |
8.9278 | 20900 | 0.0009 | - |
8.9492 | 20950 | 0.0013 | - |
8.9705 | 21000 | 0.0012 | - |
8.9919 | 21050 | 0.0006 | - |
9.0132 | 21100 | 0.0009 | - |
9.0346 | 21150 | 0.0008 | - |
9.0560 | 21200 | 0.0009 | - |
9.0773 | 21250 | 0.0005 | - |
9.0987 | 21300 | 0.0005 | - |
9.1200 | 21350 | 0.0008 | - |
9.1414 | 21400 | 0.0008 | - |
9.1628 | 21450 | 0.0011 | - |
9.1841 | 21500 | 0.0007 | - |
9.2055 | 21550 | 0.0008 | - |
9.2268 | 21600 | 0.0012 | - |
9.2482 | 21650 | 0.0008 | - |
9.2695 | 21700 | 0.0005 | - |
9.2909 | 21750 | 0.0005 | - |
9.3123 | 21800 | 0.0004 | - |
9.3336 | 21850 | 0.0011 | - |
9.3550 | 21900 | 0.0007 | - |
9.3763 | 21950 | 0.0002 | - |
9.3977 | 22000 | 0.0006 | - |
9.4191 | 22050 | 0.0003 | - |
9.4404 | 22100 | 0.0008 | - |
9.4618 | 22150 | 0.0003 | - |
9.4831 | 22200 | 0.0008 | - |
9.5045 | 22250 | 0.0011 | - |
9.5258 | 22300 | 0.0011 | - |
9.5472 | 22350 | 0.0014 | - |
9.5686 | 22400 | 0.0007 | - |
9.5899 | 22450 | 0.0006 | - |
9.6113 | 22500 | 0.0007 | - |
9.6326 | 22550 | 0.0001 | - |
9.6540 | 22600 | 0.0004 | - |
9.6754 | 22650 | 0.0003 | - |
9.6967 | 22700 | 0.0005 | - |
9.7181 | 22750 | 0.001 | - |
9.7394 | 22800 | 0.0008 | - |
9.7608 | 22850 | 0.0002 | - |
9.7821 | 22900 | 0.0006 | - |
9.8035 | 22950 | 0.0005 | - |
9.8249 | 23000 | 0.0005 | - |
9.8462 | 23050 | 0.0004 | - |
9.8676 | 23100 | 0.0009 | - |
9.8889 | 23150 | 0.0007 | - |
9.9103 | 23200 | 0.0005 | - |
9.9317 | 23250 | 0.0003 | - |
9.9530 | 23300 | 0.0003 | - |
9.9744 | 23350 | 0.0012 | - |
9.9957 | 23400 | 0.0011 | - |
10.0171 | 23450 | 0.0006 | - |
10.0384 | 23500 | 0.0006 | - |
10.0598 | 23550 | 0.0004 | - |
10.0812 | 23600 | 0.0006 | - |
10.1025 | 23650 | 0.0006 | - |
10.1239 | 23700 | 0.0005 | - |
10.1452 | 23750 | 0.0007 | - |
10.1666 | 23800 | 0.0004 | - |
10.1880 | 23850 | 0.0003 | - |
10.2093 | 23900 | 0.0017 | - |
10.2307 | 23950 | 0.0006 | - |
10.2520 | 24000 | 0.0005 | - |
10.2734 | 24050 | 0.001 | - |
10.2947 | 24100 | 0.0007 | - |
10.3161 | 24150 | 0.0009 | - |
10.3375 | 24200 | 0.0007 | - |
10.3588 | 24250 | 0.0007 | - |
10.3802 | 24300 | 0.0004 | - |
10.4015 | 24350 | 0.0007 | - |
10.4229 | 24400 | 0.0007 | - |
10.4443 | 24450 | 0.0007 | - |
10.4656 | 24500 | 0.0004 | - |
10.4870 | 24550 | 0.0009 | - |
10.5083 | 24600 | 0.0006 | - |
10.5297 | 24650 | 0.0009 | - |
10.5510 | 24700 | 0.0004 | - |
10.5724 | 24750 | 0.0007 | - |
10.5938 | 24800 | 0.0006 | - |
10.6151 | 24850 | 0.0005 | - |
10.6365 | 24900 | 0.0007 | - |
10.6578 | 24950 | 0.0005 | - |
10.6792 | 25000 | 0.0009 | - |
10.7006 | 25050 | 0.0005 | - |
10.7219 | 25100 | 0.0004 | - |
10.7433 | 25150 | 0.0008 | - |
10.7646 | 25200 | 0.0005 | - |
10.7860 | 25250 | 0.0005 | - |
10.8073 | 25300 | 0.0003 | - |
10.8287 | 25350 | 0.0007 | - |
10.8501 | 25400 | 0.0003 | - |
10.8714 | 25450 | 0.0004 | - |
10.8928 | 25500 | 0.0001 | - |
10.9141 | 25550 | 0.0003 | - |
10.9355 | 25600 | 0.0002 | - |
10.9569 | 25650 | 0.0003 | - |
10.9782 | 25700 | 0.0004 | - |
10.9996 | 25750 | 0.0002 | - |
11.0209 | 25800 | 0.0003 | - |
11.0423 | 25850 | 0.0003 | - |
11.0636 | 25900 | 0.0003 | - |
11.0850 | 25950 | 0.0003 | - |
11.1064 | 26000 | 0.0001 | - |
11.1277 | 26050 | 0.0006 | - |
11.1491 | 26100 | 0.0005 | - |
11.1704 | 26150 | 0.0002 | - |
11.1918 | 26200 | 0.0004 | - |
11.2132 | 26250 | 0.0008 | - |
11.2345 | 26300 | 0.0006 | - |
11.2559 | 26350 | 0.0006 | - |
11.2772 | 26400 | 0.0004 | - |
11.2986 | 26450 | 0.0005 | - |
11.3199 | 26500 | 0.0005 | - |
11.3413 | 26550 | 0.0004 | - |
11.3627 | 26600 | 0.0005 | - |
11.3840 | 26650 | 0.0004 | - |
11.4054 | 26700 | 0.0007 | - |
11.4267 | 26750 | 0.0002 | - |
11.4481 | 26800 | 0.0006 | - |
11.4695 | 26850 | 0.0004 | - |
11.4908 | 26900 | 0.0004 | - |
11.5122 | 26950 | 0.0002 | - |
11.5335 | 27000 | 0.0003 | - |
11.5549 | 27050 | 0.0001 | - |
11.5762 | 27100 | 0.0003 | - |
11.5976 | 27150 | 0.0003 | - |
11.6190 | 27200 | 0.0003 | - |
11.6403 | 27250 | 0.0001 | - |
11.6617 | 27300 | 0.0003 | - |
11.6830 | 27350 | 0.0004 | - |
11.7044 | 27400 | 0.0002 | - |
11.7258 | 27450 | 0.0002 | - |
11.7471 | 27500 | 0.0007 | - |
11.7685 | 27550 | 0.0005 | - |
11.7898 | 27600 | 0.0002 | - |
11.8112 | 27650 | 0.0003 | - |
11.8326 | 27700 | 0.0007 | - |
11.8539 | 27750 | 0.0001 | - |
11.8753 | 27800 | 0.0007 | - |
11.8966 | 27850 | 0.0003 | - |
11.9180 | 27900 | 0.0002 | - |
11.9393 | 27950 | 0.0003 | - |
11.9607 | 28000 | 0.0003 | - |
11.9821 | 28050 | 0.0001 | - |
12.0034 | 28100 | 0.0006 | - |
12.0248 | 28150 | 0.0003 | - |
12.0461 | 28200 | 0.0004 | - |
12.0675 | 28250 | 0.0005 | - |
12.0889 | 28300 | 0.0001 | - |
12.1102 | 28350 | 0.0003 | - |
12.1316 | 28400 | 0.0003 | - |
12.1529 | 28450 | 0.0002 | - |
12.1743 | 28500 | 0.0003 | - |
12.1956 | 28550 | 0.0003 | - |
12.2170 | 28600 | 0.0002 | - |
12.2384 | 28650 | 0.0002 | - |
12.2597 | 28700 | 0.0002 | - |
12.2811 | 28750 | 0.0001 | - |
12.3024 | 28800 | 0.0 | - |
12.3238 | 28850 | 0.0007 | - |
12.3452 | 28900 | 0.0002 | - |
12.3665 | 28950 | 0.0003 | - |
12.3879 | 29000 | 0.0003 | - |
12.4092 | 29050 | 0.0004 | - |
12.4306 | 29100 | 0.0002 | - |
12.4519 | 29150 | 0.0004 | - |
12.4733 | 29200 | 0.0 | - |
12.4947 | 29250 | 0.0006 | - |
12.5160 | 29300 | 0.0002 | - |
12.5374 | 29350 | 0.0002 | - |
12.5587 | 29400 | 0.0001 | - |
12.5801 | 29450 | 0.0003 | - |
12.6015 | 29500 | 0.0001 | - |
12.6228 | 29550 | 0.0002 | - |
12.6442 | 29600 | 0.0001 | - |
12.6655 | 29650 | 0.0004 | - |
12.6869 | 29700 | 0.0008 | - |
12.7082 | 29750 | 0.0004 | - |
12.7296 | 29800 | 0.0004 | - |
12.7510 | 29850 | 0.0004 | - |
12.7723 | 29900 | 0.0003 | - |
12.7937 | 29950 | 0.0004 | - |
12.8150 | 30000 | 0.0004 | - |
12.8364 | 30050 | 0.0007 | - |
12.8578 | 30100 | 0.0007 | - |
12.8791 | 30150 | 0.0009 | - |
12.9005 | 30200 | 0.0003 | - |
12.9218 | 30250 | 0.0003 | - |
12.9432 | 30300 | 0.0002 | - |
12.9645 | 30350 | 0.0003 | - |
12.9859 | 30400 | 0.0001 | - |
13.0073 | 30450 | 0.0004 | - |
13.0286 | 30500 | 0.0002 | - |
13.0500 | 30550 | 0.0001 | - |
13.0713 | 30600 | 0.0002 | - |
13.0927 | 30650 | 0.0001 | - |
13.1141 | 30700 | 0.0001 | - |
13.1354 | 30750 | 0.0002 | - |
13.1568 | 30800 | 0.0004 | - |
13.1781 | 30850 | 0.0003 | - |
13.1995 | 30900 | 0.0001 | - |
13.2208 | 30950 | 0.0001 | - |
13.2422 | 31000 | 0.0002 | - |
13.2636 | 31050 | 0.0002 | - |
13.2849 | 31100 | 0.0001 | - |
13.3063 | 31150 | 0.0003 | - |
13.3276 | 31200 | 0.0002 | - |
13.3490 | 31250 | 0.0002 | - |
13.3704 | 31300 | 0.0 | - |
13.3917 | 31350 | 0.0001 | - |
13.4131 | 31400 | 0.0001 | - |
13.4344 | 31450 | 0.0002 | - |
13.4558 | 31500 | 0.0001 | - |
13.4771 | 31550 | 0.0003 | - |
13.4985 | 31600 | 0.0004 | - |
13.5199 | 31650 | 0.0001 | - |
13.5412 | 31700 | 0.0 | - |
13.5626 | 31750 | 0.0002 | - |
13.5839 | 31800 | 0.0 | - |
13.6053 | 31850 | 0.0 | - |
13.6267 | 31900 | 0.0001 | - |
13.6480 | 31950 | 0.0 | - |
13.6694 | 32000 | 0.0003 | - |
13.6907 | 32050 | 0.0001 | - |
13.7121 | 32100 | 0.0001 | - |
13.7334 | 32150 | 0.0002 | - |
13.7548 | 32200 | 0.0002 | - |
13.7762 | 32250 | 0.0004 | - |
13.7975 | 32300 | 0.0004 | - |
13.8189 | 32350 | 0.0003 | - |
13.8402 | 32400 | 0.0001 | - |
13.8616 | 32450 | 0.0003 | - |
13.8830 | 32500 | 0.0001 | - |
13.9043 | 32550 | 0.0001 | - |
13.9257 | 32600 | 0.0003 | - |
13.9470 | 32650 | 0.0002 | - |
13.9684 | 32700 | 0.0002 | - |
13.9897 | 32750 | 0.0002 | - |
14.0111 | 32800 | 0.0001 | - |
14.0325 | 32850 | 0.0001 | - |
14.0538 | 32900 | 0.0001 | - |
14.0752 | 32950 | 0.0002 | - |
14.0965 | 33000 | 0.0002 | - |
14.1179 | 33050 | 0.0005 | - |
14.1393 | 33100 | 0.0002 | - |
14.1606 | 33150 | 0.0001 | - |
14.1820 | 33200 | 0.0001 | - |
14.2033 | 33250 | 0.0001 | - |
14.2247 | 33300 | 0.0002 | - |
14.2460 | 33350 | 0.0003 | - |
14.2674 | 33400 | 0.0001 | - |
14.2888 | 33450 | 0.0001 | - |
14.3101 | 33500 | 0.0001 | - |
14.3315 | 33550 | 0.0001 | - |
14.3528 | 33600 | 0.0001 | - |
14.3742 | 33650 | 0.0001 | - |
14.3956 | 33700 | 0.0 | - |
14.4169 | 33750 | 0.0001 | - |
14.4383 | 33800 | 0.0001 | - |
14.4596 | 33850 | 0.0002 | - |
14.4810 | 33900 | 0.0001 | - |
14.5023 | 33950 | 0.0001 | - |
14.5237 | 34000 | 0.0 | - |
14.5451 | 34050 | 0.0002 | - |
14.5664 | 34100 | 0.0004 | - |
14.5878 | 34150 | 0.0001 | - |
14.6091 | 34200 | 0.0001 | - |
14.6305 | 34250 | 0.0001 | - |
14.6519 | 34300 | 0.0002 | - |
14.6732 | 34350 | 0.0004 | - |
14.6946 | 34400 | 0.0005 | - |
14.7159 | 34450 | 0.0001 | - |
14.7373 | 34500 | 0.0001 | - |
14.7587 | 34550 | 0.0001 | - |
14.7800 | 34600 | 0.0002 | - |
14.8014 | 34650 | 0.0001 | - |
14.8227 | 34700 | 0.0003 | - |
14.8441 | 34750 | 0.0001 | - |
14.8654 | 34800 | 0.0003 | - |
14.8868 | 34850 | 0.0001 | - |
14.9082 | 34900 | 0.0003 | - |
14.9295 | 34950 | 0.0002 | - |
14.9509 | 35000 | 0.0002 | - |
14.9722 | 35050 | 0.0003 | - |
14.9936 | 35100 | 0.0002 | - |
15.0150 | 35150 | 0.0002 | - |
15.0363 | 35200 | 0.0002 | - |
15.0577 | 35250 | 0.0001 | - |
15.0790 | 35300 | 0.0001 | - |
15.1004 | 35350 | 0.0001 | - |
15.1217 | 35400 | 0.0001 | - |
15.1431 | 35450 | 0.0001 | - |
15.1645 | 35500 | 0.0 | - |
15.1858 | 35550 | 0.0003 | - |
15.2072 | 35600 | 0.0001 | - |
15.2285 | 35650 | 0.0002 | - |
15.2499 | 35700 | 0.0003 | - |
15.2713 | 35750 | 0.0 | - |
15.2926 | 35800 | 0.0001 | - |
15.3140 | 35850 | 0.0005 | - |
15.3353 | 35900 | 0.0002 | - |
15.3567 | 35950 | 0.0002 | - |
15.3780 | 36000 | 0.0003 | - |
15.3994 | 36050 | 0.0001 | - |
15.4208 | 36100 | 0.0001 | - |
15.4421 | 36150 | 0.0002 | - |
15.4635 | 36200 | 0.0004 | - |
15.4848 | 36250 | 0.0001 | - |
15.5062 | 36300 | 0.0001 | - |
15.5276 | 36350 | 0.0 | - |
15.5489 | 36400 | 0.0001 | - |
15.5703 | 36450 | 0.0002 | - |
15.5916 | 36500 | 0.0001 | - |
15.6130 | 36550 | 0.0004 | - |
15.6343 | 36600 | 0.0004 | - |
15.6557 | 36650 | 0.0 | - |
15.6771 | 36700 | 0.0001 | - |
15.6984 | 36750 | 0.0 | - |
15.7198 | 36800 | 0.0003 | - |
15.7411 | 36850 | 0.0002 | - |
15.7625 | 36900 | 0.0001 | - |
15.7839 | 36950 | 0.0001 | - |
15.8052 | 37000 | 0.0 | - |
15.8266 | 37050 | 0.0002 | - |
15.8479 | 37100 | 0.0 | - |
15.8693 | 37150 | 0.0003 | - |
15.8906 | 37200 | 0.0002 | - |
15.9120 | 37250 | 0.0001 | - |
15.9334 | 37300 | 0.0001 | - |
15.9547 | 37350 | 0.0001 | - |
15.9761 | 37400 | 0.0001 | - |
15.9974 | 37450 | 0.0006 | - |
16.0188 | 37500 | 0.0002 | - |
16.0402 | 37550 | 0.0002 | - |
16.0615 | 37600 | 0.0003 | - |
16.0829 | 37650 | 0.0001 | - |
16.1042 | 37700 | 0.0 | - |
16.1256 | 37750 | 0.0004 | - |
16.1469 | 37800 | 0.0003 | - |
16.1683 | 37850 | 0.0001 | - |
16.1897 | 37900 | 0.0001 | - |
16.2110 | 37950 | 0.0003 | - |
16.2324 | 38000 | 0.0002 | - |
16.2537 | 38050 | 0.0004 | - |
16.2751 | 38100 | 0.0 | - |
16.2965 | 38150 | 0.0 | - |
16.3178 | 38200 | 0.0001 | - |
16.3392 | 38250 | 0.0001 | - |
16.3605 | 38300 | 0.0 | - |
16.3819 | 38350 | 0.0 | - |
16.4032 | 38400 | 0.0002 | - |
16.4246 | 38450 | 0.0004 | - |
16.4460 | 38500 | 0.0001 | - |
16.4673 | 38550 | 0.0003 | - |
16.4887 | 38600 | 0.0001 | - |
16.5100 | 38650 | 0.0001 | - |
16.5314 | 38700 | 0.0004 | - |
16.5528 | 38750 | 0.0001 | - |
16.5741 | 38800 | 0.0 | - |
16.5955 | 38850 | 0.0 | - |
16.6168 | 38900 | 0.0002 | - |
16.6382 | 38950 | 0.0 | - |
16.6595 | 39000 | 0.0004 | - |
16.6809 | 39050 | 0.0002 | - |
16.7023 | 39100 | 0.0001 | - |
16.7236 | 39150 | 0.0002 | - |
16.7450 | 39200 | 0.0001 | - |
16.7663 | 39250 | 0.0002 | - |
16.7877 | 39300 | 0.0001 | - |
16.8091 | 39350 | 0.0001 | - |
16.8304 | 39400 | 0.0001 | - |
16.8518 | 39450 | 0.0001 | - |
16.8731 | 39500 | 0.0004 | - |
16.8945 | 39550 | 0.0001 | - |
16.9158 | 39600 | 0.0003 | - |
16.9372 | 39650 | 0.0001 | - |
16.9586 | 39700 | 0.0002 | - |
16.9799 | 39750 | 0.0 | - |
17.0013 | 39800 | 0.0001 | - |
17.0226 | 39850 | 0.0001 | - |
17.0440 | 39900 | 0.0 | - |
17.0654 | 39950 | 0.0 | - |
17.0867 | 40000 | 0.0 | - |
17.1081 | 40050 | 0.0001 | - |
17.1294 | 40100 | 0.0 | - |
17.1508 | 40150 | 0.0002 | - |
17.1721 | 40200 | 0.0 | - |
17.1935 | 40250 | 0.0002 | - |
17.2149 | 40300 | 0.0004 | - |
17.2362 | 40350 | 0.0001 | - |
17.2576 | 40400 | 0.0002 | - |
17.2789 | 40450 | 0.0001 | - |
17.3003 | 40500 | 0.0001 | - |
17.3217 | 40550 | 0.0002 | - |
17.3430 | 40600 | 0.0001 | - |
17.3644 | 40650 | 0.0002 | - |
17.3857 | 40700 | 0.0 | - |
17.4071 | 40750 | 0.0002 | - |
17.4284 | 40800 | 0.0002 | - |
17.4498 | 40850 | 0.0002 | - |
17.4712 | 40900 | 0.0004 | - |
17.4925 | 40950 | 0.0002 | - |
17.5139 | 41000 | 0.0003 | - |
17.5352 | 41050 | 0.0002 | - |
17.5566 | 41100 | 0.0002 | - |
17.5780 | 41150 | 0.0002 | - |
17.5993 | 41200 | 0.0002 | - |
17.6207 | 41250 | 0.0002 | - |
17.6420 | 41300 | 0.0002 | - |
17.6634 | 41350 | 0.0001 | - |
17.6848 | 41400 | 0.0001 | - |
17.7061 | 41450 | 0.0002 | - |
17.7275 | 41500 | 0.0002 | - |
17.7488 | 41550 | 0.0002 | - |
17.7702 | 41600 | 0.0 | - |
17.7915 | 41650 | 0.0003 | - |
17.8129 | 41700 | 0.0001 | - |
17.8343 | 41750 | 0.0 | - |
17.8556 | 41800 | 0.0001 | - |
17.8770 | 41850 | 0.0001 | - |
17.8983 | 41900 | 0.0002 | - |
17.9197 | 41950 | 0.0001 | - |
17.9411 | 42000 | 0.0003 | - |
17.9624 | 42050 | 0.0001 | - |
17.9838 | 42100 | 0.0001 | - |
18.0051 | 42150 | 0.0001 | - |
18.0265 | 42200 | 0.0002 | - |
18.0478 | 42250 | 0.0005 | - |
18.0692 | 42300 | 0.0002 | - |
18.0906 | 42350 | 0.0003 | - |
18.1119 | 42400 | 0.0001 | - |
18.1333 | 42450 | 0.0004 | - |
18.1546 | 42500 | 0.0002 | - |
18.1760 | 42550 | 0.0002 | - |
18.1974 | 42600 | 0.0002 | - |
18.2187 | 42650 | 0.0003 | - |
18.2401 | 42700 | 0.0001 | - |
18.2614 | 42750 | 0.0001 | - |
18.2828 | 42800 | 0.0001 | - |
18.3041 | 42850 | 0.0 | - |
18.3255 | 42900 | 0.0 | - |
18.3469 | 42950 | 0.0001 | - |
18.3682 | 43000 | 0.0 | - |
18.3896 | 43050 | 0.0001 | - |
18.4109 | 43100 | 0.0001 | - |
18.4323 | 43150 | 0.0002 | - |
18.4537 | 43200 | 0.0001 | - |
18.4750 | 43250 | 0.0001 | - |
18.4964 | 43300 | 0.0001 | - |
18.5177 | 43350 | 0.0001 | - |
18.5391 | 43400 | 0.0 | - |
18.5604 | 43450 | 0.0 | - |
18.5818 | 43500 | 0.0001 | - |
18.6032 | 43550 | 0.0001 | - |
18.6245 | 43600 | 0.0001 | - |
18.6459 | 43650 | 0.0004 | - |
18.6672 | 43700 | 0.0003 | - |
18.6886 | 43750 | 0.0002 | - |
18.7100 | 43800 | 0.0001 | - |
18.7313 | 43850 | 0.0001 | - |
18.7527 | 43900 | 0.0001 | - |
18.7740 | 43950 | 0.0001 | - |
18.7954 | 44000 | 0.0002 | - |
18.8167 | 44050 | 0.0003 | - |
18.8381 | 44100 | 0.0001 | - |
18.8595 | 44150 | 0.0001 | - |
18.8808 | 44200 | 0.0001 | - |
18.9022 | 44250 | 0.0003 | - |
18.9235 | 44300 | 0.0001 | - |
18.9449 | 44350 | 0.0001 | - |
18.9663 | 44400 | 0.0 | - |
18.9876 | 44450 | 0.0 | - |
19.0090 | 44500 | 0.0003 | - |
19.0303 | 44550 | 0.0002 | - |
19.0517 | 44600 | 0.0002 | - |
19.0730 | 44650 | 0.0003 | - |
19.0944 | 44700 | 0.0002 | - |
19.1158 | 44750 | 0.0001 | - |
19.1371 | 44800 | 0.0001 | - |
19.1585 | 44850 | 0.0001 | - |
19.1798 | 44900 | 0.0 | - |
19.2012 | 44950 | 0.0001 | - |
19.2226 | 45000 | 0.0003 | - |
19.2439 | 45050 | 0.0001 | - |
19.2653 | 45100 | 0.0 | - |
19.2866 | 45150 | 0.0 | - |
19.3080 | 45200 | 0.0001 | - |
19.3293 | 45250 | 0.0001 | - |
19.3507 | 45300 | 0.0002 | - |
19.3721 | 45350 | 0.0002 | - |
19.3934 | 45400 | 0.0003 | - |
19.4148 | 45450 | 0.0001 | - |
19.4361 | 45500 | 0.0 | - |
19.4575 | 45550 | 0.0001 | - |
19.4789 | 45600 | 0.0 | - |
19.5002 | 45650 | 0.0002 | - |
19.5216 | 45700 | 0.0 | - |
19.5429 | 45750 | 0.0001 | - |
19.5643 | 45800 | 0.0001 | - |
19.5856 | 45850 | 0.0001 | - |
19.6070 | 45900 | 0.0001 | - |
19.6284 | 45950 | 0.0001 | - |
19.6497 | 46000 | 0.0 | - |
19.6711 | 46050 | 0.0001 | - |
19.6924 | 46100 | 0.0 | - |
19.7138 | 46150 | 0.0002 | - |
19.7352 | 46200 | 0.0001 | - |
19.7565 | 46250 | 0.0002 | - |
19.7779 | 46300 | 0.0002 | - |
19.7992 | 46350 | 0.0001 | - |
19.8206 | 46400 | 0.0001 | - |
19.8419 | 46450 | 0.0002 | - |
19.8633 | 46500 | 0.0003 | - |
19.8847 | 46550 | 0.0002 | - |
19.9060 | 46600 | 0.0002 | - |
19.9274 | 46650 | 0.0001 | - |
19.9487 | 46700 | 0.0001 | - |
19.9701 | 46750 | 0.0 | - |
19.9915 | 46800 | 0.0002 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mini1013/master_item_bt_test_org_allcate
Base model
klue/roberta-base