File size: 20,234 Bytes
2ff3f59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
---
base_model: klue/roberta-base
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text:      뚜왈렛 (100ml)  LotteOn > 뷰티 > 향수 > 남성향수 LotteOn > 뷰티 > 향수 > 남성향수
- text: 오랑쥬 상긴느 200ml (증정) 울랑 앙피니 30ml_마젠타 LotteOn > 뷰티 > 베이스메이크업 > 향수/디퓨저 > 공용향수
    LotteOn > 뷰티 > 명품화장품 > 향수/디퓨저 > 공용향수
- text: 디올 블루밍 부케 롤러    뚜왈렛 20ml  LotteOn > 뷰티 > 향수 > 여성향수 LotteOn > 뷰티 > 향수 >
    여성향수
- text: 포멜로 파라디 30ml +1.7ml 1 마젠타 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded
    > 아틀리에 코롱 DepartmentLotteOn > 뷰티 > 향수 > 향수세트
- text: 베르가모트 솔레이 200ml (증정) 울랑 앙피니 30ml_블랙 LOREAL > DepartmentLotteOn > 아틀리에 코롱 >
    Branded > 아틀리에 코롱 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱
inference: true
model-index:
- name: SetFit with klue/roberta-base
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.5334819796768769
      name: Accuracy
---

# SetFit with klue/roberta-base

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [klue/roberta-base](https://huggingface.co/klue/roberta-base) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [klue/roberta-base](https://huggingface.co/klue/roberta-base)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | <ul><li>'마타바 석고방향제 만들기 diy 재료모음 05_석고전용색소_01_석고전용색소50ml_노랑 (#M)11st>과자/간식>초콜릿>초콜릿DIY>도구 기타 11st > 식품 > 과자/간식 > 초콜릿 > 초콜릿DIY'</li><li>'A 시그니처 디퓨저 1+1 프로모션 네롤리바질_피오니 LotteOn > 생활/건강 > 세제/방향/살충 > 방향제 LotteOn > 생활/건강 > 세제/방향/살충 > 방향제'</li><li>'마타바 석고방향제 만들기 diy 재료모음 01_스위스G향료100ml_멋스럽고세련된향기_69_인투유 (#M)11st>과자/간식>초콜릿>초콜릿DIY>도구 기타 11st > 식품 > 과자/간식 > 초콜릿 > 초콜릿DIY'</li></ul>                                                                                                             |
| 0     | <ul><li>'아틀리에 코롱 - 자스민 안젤리크 코롱 압솔뤼 스프레이 100ml/3.3oz LOREAL > Ssg > 아틀리에 코롱 > Branded > 아틀리에 코롱 LOREAL > Ssg > 아틀리에 코롱 > Branded > 아틀리에 코롱'</li><li>'베티베르 파탈 200ml (증정) 아이리스 리벨 30ml LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱'</li><li>'포멜로 파라디 30ml +1.7ml 1종 코랄 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱 DepartmentLotteOn > 뷰티 > 향수 > 향수세트'</li></ul>                                               |
| 2     | <ul><li>'베르가모트 솔레이 200ml (증정) 러브 오스만투스 30ml_오랑쥬 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱'</li><li>'포멜로 파라디 100ml 코랄 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 포멜로 파라디 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 포멜로 파라디'</li><li>'베르가모트 솔레이 200ml (증정) 클레망틴 캘리포니아 30ml_마젠타 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱 LOREAL > DepartmentLotteOn > 아틀리에 코롱 > Branded > 아틀리에 코롱'</li></ul> |
| 1     | <ul><li>'불가리 뿌르 옴므 익스트림 EDT 50ml  LotteOn > 뷰티 > 향수 > 남성향수 LotteOn > 뷰티 > 향수 > 남성향수'</li><li>'조르지오 아르마니 아쿠아 디 지오 옴므 세트 EDT 100ml + 트레블 15ml  (#M)위메프 > 뷰티 > 명품화장품 > 메이크업 > 립메이크업 위메프 > 뷰티 > 명품화장품 > 스킨케어'</li><li>'불가리 뿌르옴므 익스트림 100ml 50ml 30ml 백화점정품 50ml 백화점정품 홈>화장품/미용>향수>남성향수;(#M)홈>남자향수>불가리 Naverstore > 화장품/미용 > 향수 > 남성향수'</li></ul>                                                                                                                                                   |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.5335   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_item_top_bt11")
# Run inference
preds = model("듄 포 맨 오 드 뚜왈렛 (100ml)  LotteOn > 뷰티 > 향수 > 남성향수 LotteOn > 뷰티 > 향수 > 남성향수")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 11  | 26.41  | 45  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 50                    |
| 2     | 50                    |
| 3     | 50                    |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0032  | 1    | 0.395         | -               |
| 0.1597  | 50   | 0.3286        | -               |
| 0.3195  | 100  | 0.2663        | -               |
| 0.4792  | 150  | 0.2215        | -               |
| 0.6390  | 200  | 0.1928        | -               |
| 0.7987  | 250  | 0.081         | -               |
| 0.9585  | 300  | 0.0147        | -               |
| 1.1182  | 350  | 0.0027        | -               |
| 1.2780  | 400  | 0.0008        | -               |
| 1.4377  | 450  | 0.0004        | -               |
| 1.5974  | 500  | 0.0006        | -               |
| 1.7572  | 550  | 0.0003        | -               |
| 1.9169  | 600  | 0.0001        | -               |
| 2.0767  | 650  | 0.0001        | -               |
| 2.2364  | 700  | 0.0001        | -               |
| 2.3962  | 750  | 0.0001        | -               |
| 2.5559  | 800  | 0.0           | -               |
| 2.7157  | 850  | 0.0           | -               |
| 2.8754  | 900  | 0.0           | -               |
| 3.0351  | 950  | 0.0           | -               |
| 3.1949  | 1000 | 0.0           | -               |
| 3.3546  | 1050 | 0.0           | -               |
| 3.5144  | 1100 | 0.0           | -               |
| 3.6741  | 1150 | 0.0           | -               |
| 3.8339  | 1200 | 0.0           | -               |
| 3.9936  | 1250 | 0.0           | -               |
| 4.1534  | 1300 | 0.0           | -               |
| 4.3131  | 1350 | 0.0           | -               |
| 4.4728  | 1400 | 0.0           | -               |
| 4.6326  | 1450 | 0.0           | -               |
| 4.7923  | 1500 | 0.0           | -               |
| 4.9521  | 1550 | 0.0           | -               |
| 5.1118  | 1600 | 0.0           | -               |
| 5.2716  | 1650 | 0.0           | -               |
| 5.4313  | 1700 | 0.0           | -               |
| 5.5911  | 1750 | 0.0           | -               |
| 5.7508  | 1800 | 0.0           | -               |
| 5.9105  | 1850 | 0.0           | -               |
| 6.0703  | 1900 | 0.0           | -               |
| 6.2300  | 1950 | 0.0           | -               |
| 6.3898  | 2000 | 0.0           | -               |
| 6.5495  | 2050 | 0.0           | -               |
| 6.7093  | 2100 | 0.0           | -               |
| 6.8690  | 2150 | 0.0           | -               |
| 7.0288  | 2200 | 0.0           | -               |
| 7.1885  | 2250 | 0.0           | -               |
| 7.3482  | 2300 | 0.0           | -               |
| 7.5080  | 2350 | 0.0           | -               |
| 7.6677  | 2400 | 0.0           | -               |
| 7.8275  | 2450 | 0.0           | -               |
| 7.9872  | 2500 | 0.0           | -               |
| 8.1470  | 2550 | 0.0           | -               |
| 8.3067  | 2600 | 0.0           | -               |
| 8.4665  | 2650 | 0.0           | -               |
| 8.6262  | 2700 | 0.0           | -               |
| 8.7859  | 2750 | 0.0           | -               |
| 8.9457  | 2800 | 0.0           | -               |
| 9.1054  | 2850 | 0.0           | -               |
| 9.2652  | 2900 | 0.0           | -               |
| 9.4249  | 2950 | 0.0           | -               |
| 9.5847  | 3000 | 0.0           | -               |
| 9.7444  | 3050 | 0.0           | -               |
| 9.9042  | 3100 | 0.0           | -               |
| 10.0639 | 3150 | 0.0           | -               |
| 10.2236 | 3200 | 0.0           | -               |
| 10.3834 | 3250 | 0.0           | -               |
| 10.5431 | 3300 | 0.0           | -               |
| 10.7029 | 3350 | 0.0           | -               |
| 10.8626 | 3400 | 0.0           | -               |
| 11.0224 | 3450 | 0.0           | -               |
| 11.1821 | 3500 | 0.0           | -               |
| 11.3419 | 3550 | 0.0           | -               |
| 11.5016 | 3600 | 0.0           | -               |
| 11.6613 | 3650 | 0.0           | -               |
| 11.8211 | 3700 | 0.0           | -               |
| 11.9808 | 3750 | 0.0           | -               |
| 12.1406 | 3800 | 0.0           | -               |
| 12.3003 | 3850 | 0.0           | -               |
| 12.4601 | 3900 | 0.0           | -               |
| 12.6198 | 3950 | 0.0           | -               |
| 12.7796 | 4000 | 0.0           | -               |
| 12.9393 | 4050 | 0.0           | -               |
| 13.0990 | 4100 | 0.0           | -               |
| 13.2588 | 4150 | 0.0           | -               |
| 13.4185 | 4200 | 0.0           | -               |
| 13.5783 | 4250 | 0.0           | -               |
| 13.7380 | 4300 | 0.0           | -               |
| 13.8978 | 4350 | 0.0           | -               |
| 14.0575 | 4400 | 0.0           | -               |
| 14.2173 | 4450 | 0.0           | -               |
| 14.3770 | 4500 | 0.0           | -               |
| 14.5367 | 4550 | 0.0           | -               |
| 14.6965 | 4600 | 0.0           | -               |
| 14.8562 | 4650 | 0.0           | -               |
| 15.0160 | 4700 | 0.0           | -               |
| 15.1757 | 4750 | 0.0           | -               |
| 15.3355 | 4800 | 0.0           | -               |
| 15.4952 | 4850 | 0.0           | -               |
| 15.6550 | 4900 | 0.0           | -               |
| 15.8147 | 4950 | 0.0           | -               |
| 15.9744 | 5000 | 0.0           | -               |
| 16.1342 | 5050 | 0.0           | -               |
| 16.2939 | 5100 | 0.0           | -               |
| 16.4537 | 5150 | 0.0           | -               |
| 16.6134 | 5200 | 0.0           | -               |
| 16.7732 | 5250 | 0.0           | -               |
| 16.9329 | 5300 | 0.0           | -               |
| 17.0927 | 5350 | 0.0           | -               |
| 17.2524 | 5400 | 0.0           | -               |
| 17.4121 | 5450 | 0.0           | -               |
| 17.5719 | 5500 | 0.0           | -               |
| 17.7316 | 5550 | 0.0           | -               |
| 17.8914 | 5600 | 0.0           | -               |
| 18.0511 | 5650 | 0.0           | -               |
| 18.2109 | 5700 | 0.0           | -               |
| 18.3706 | 5750 | 0.0           | -               |
| 18.5304 | 5800 | 0.0           | -               |
| 18.6901 | 5850 | 0.0           | -               |
| 18.8498 | 5900 | 0.0           | -               |
| 19.0096 | 5950 | 0.0           | -               |
| 19.1693 | 6000 | 0.0           | -               |
| 19.3291 | 6050 | 0.0           | -               |
| 19.4888 | 6100 | 0.0           | -               |
| 19.6486 | 6150 | 0.0           | -               |
| 19.8083 | 6200 | 0.0           | -               |
| 19.9681 | 6250 | 0.0           | -               |
| 20.1278 | 6300 | 0.0           | -               |
| 20.2875 | 6350 | 0.0           | -               |
| 20.4473 | 6400 | 0.0           | -               |
| 20.6070 | 6450 | 0.0           | -               |
| 20.7668 | 6500 | 0.0           | -               |
| 20.9265 | 6550 | 0.0           | -               |
| 21.0863 | 6600 | 0.0           | -               |
| 21.2460 | 6650 | 0.0           | -               |
| 21.4058 | 6700 | 0.0           | -               |
| 21.5655 | 6750 | 0.0           | -               |
| 21.7252 | 6800 | 0.0           | -               |
| 21.8850 | 6850 | 0.0           | -               |
| 22.0447 | 6900 | 0.0           | -               |
| 22.2045 | 6950 | 0.0           | -               |
| 22.3642 | 7000 | 0.0           | -               |
| 22.5240 | 7050 | 0.0           | -               |
| 22.6837 | 7100 | 0.0           | -               |
| 22.8435 | 7150 | 0.0           | -               |
| 23.0032 | 7200 | 0.0           | -               |
| 23.1629 | 7250 | 0.0           | -               |
| 23.3227 | 7300 | 0.0           | -               |
| 23.4824 | 7350 | 0.0           | -               |
| 23.6422 | 7400 | 0.0           | -               |
| 23.8019 | 7450 | 0.0           | -               |
| 23.9617 | 7500 | 0.0           | -               |
| 24.1214 | 7550 | 0.0           | -               |
| 24.2812 | 7600 | 0.0           | -               |
| 24.4409 | 7650 | 0.0           | -               |
| 24.6006 | 7700 | 0.0           | -               |
| 24.7604 | 7750 | 0.0           | -               |
| 24.9201 | 7800 | 0.0           | -               |
| 25.0799 | 7850 | 0.0           | -               |
| 25.2396 | 7900 | 0.0           | -               |
| 25.3994 | 7950 | 0.0           | -               |
| 25.5591 | 8000 | 0.0           | -               |
| 25.7188 | 8050 | 0.0           | -               |
| 25.8786 | 8100 | 0.0           | -               |
| 26.0383 | 8150 | 0.0           | -               |
| 26.1981 | 8200 | 0.0           | -               |
| 26.3578 | 8250 | 0.0           | -               |
| 26.5176 | 8300 | 0.0           | -               |
| 26.6773 | 8350 | 0.0           | -               |
| 26.8371 | 8400 | 0.0           | -               |
| 26.9968 | 8450 | 0.0           | -               |
| 27.1565 | 8500 | 0.0           | -               |
| 27.3163 | 8550 | 0.0           | -               |
| 27.4760 | 8600 | 0.0           | -               |
| 27.6358 | 8650 | 0.0           | -               |
| 27.7955 | 8700 | 0.0           | -               |
| 27.9553 | 8750 | 0.0           | -               |
| 28.1150 | 8800 | 0.0           | -               |
| 28.2748 | 8850 | 0.0           | -               |
| 28.4345 | 8900 | 0.0           | -               |
| 28.5942 | 8950 | 0.0           | -               |
| 28.7540 | 9000 | 0.0           | -               |
| 28.9137 | 9050 | 0.0           | -               |
| 29.0735 | 9100 | 0.0           | -               |
| 29.2332 | 9150 | 0.0           | -               |
| 29.3930 | 9200 | 0.0           | -               |
| 29.5527 | 9250 | 0.0           | -               |
| 29.7125 | 9300 | 0.0           | -               |
| 29.8722 | 9350 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->