metadata
library_name: transformers
tags:
- generated_from_trainer
model-index:
- name: bert-reg-biencoder-mae
results: []
bert-reg-biencoder-mae
This model is a fine-tuned version of on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.2340
- Mse: 0.0819
- Mae: 0.2335
- Pearson Corr: 0.2475
- Spearman Corr: 0.1329
- Cosine Sim: 0.9022
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | Mse | Mae | Pearson Corr | Spearman Corr | Cosine Sim |
---|---|---|---|---|---|---|---|---|
0.2846 | 1.0 | 21 | 0.2617 | 0.1153 | 0.2610 | 0.1327 | 0.0936 | 0.9053 |
0.2728 | 2.0 | 42 | 0.2310 | 0.0886 | 0.2304 | 0.0188 | 0.0316 | 0.8994 |
0.2511 | 3.0 | 63 | 0.2282 | 0.0847 | 0.2276 | 0.1716 | 0.1111 | 0.9058 |
0.2253 | 4.0 | 84 | 0.2333 | 0.0864 | 0.2329 | 0.1906 | 0.1191 | 0.9041 |
0.1993 | 5.0 | 105 | 0.2329 | 0.0822 | 0.2325 | 0.2303 | 0.1246 | 0.9016 |
0.1844 | 6.0 | 126 | 0.2357 | 0.0828 | 0.2352 | 0.2284 | 0.1254 | 0.9018 |
0.165 | 7.0 | 147 | 0.2340 | 0.0819 | 0.2335 | 0.2475 | 0.1329 | 0.9022 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.4.0
- Datasets 3.0.1
- Tokenizers 0.20.0