|
--- |
|
language: |
|
- en |
|
inference: false |
|
tags: |
|
- text-classification |
|
- onnx |
|
- int8 |
|
- optimum |
|
- multi-class-classification |
|
- multi-label-classification |
|
- toxic |
|
- toxicity |
|
- hate speech |
|
- offensive language |
|
- ONNXRuntime |
|
license: apache-2.0 |
|
--- |
|
|
|
# Text Classification Toxicity |
|
|
|
This model is a fined-tuned version of [MiniLMv2-L6-H384](https://huggingface.co/nreimers/MiniLMv2-L6-H384-distilled-from-BERT-Large) on the on the [Jigsaw 1st Kaggle competition](https://www.kaggle.com/competitions/jigsaw-toxic-comment-classification-challenge) dataset using [unitary/toxic-bert](https://huggingface.co/unitary/toxic-bert) as teacher model. |
|
The original unquantized model can be found [here](https://huggingface.co/minuva/MiniLMv2-toxic-jigsaw-lite). |
|
|
|
The model contains two labels only (toxicity and severe toxicity). For the model with all labels refer to this [page](https://huggingface.co/minuva/MiniLMv2-toxic-jigsaw) |
|
|
|
|
|
# Optimum |
|
|
|
## Installation |
|
|
|
Install from source: |
|
```bash |
|
python -m pip install optimum[onnxruntime]@git+https://github.com/huggingface/optimum.git |
|
``` |
|
|
|
|
|
## Run the Model |
|
```py |
|
from optimum.onnxruntime import ORTModelForSequenceClassification |
|
from transformers import AutoTokenizer, pipeline |
|
|
|
model = ORTModelForSequenceClassification.from_pretrained('minuva/MiniLMv2-toxic-jigsaw-lite-onnx', provider="CPUExecutionProvider") |
|
tokenizer = AutoTokenizer.from_pretrained('minuva/MiniLMv2-toxic-jigsaw-lite-onnx', use_fast=True, model_max_length=256, truncation=True, padding='max_length') |
|
|
|
pipe = pipeline(task='text-classification', model=model, tokenizer=tokenizer, ) |
|
texts = ["This is pure trash",] |
|
pipe(texts) |
|
# [{'label': 'toxic', 'score': 0.6553249955177307}] |
|
``` |
|
|
|
# ONNX Runtime only |
|
|
|
A lighter solution for deployment |
|
|
|
|
|
## Installation |
|
|
|
```bash |
|
pip install tokenizers |
|
pip install onnxruntime |
|
git clone https://huggingface.co/minuva/MiniLMv2-toxic-jigsaw-lite-onnx |
|
``` |
|
## Load the Model |
|
```py |
|
import os |
|
import numpy as np |
|
import json |
|
|
|
from tokenizers import Tokenizer |
|
from onnxruntime import InferenceSession |
|
|
|
|
|
model_name = "minuva/MiniLMv2-toxic-jigsaw-lite-onnx" |
|
tokenizer = Tokenizer.from_pretrained(model_name) |
|
tokenizer.enable_padding() |
|
tokenizer.enable_truncation(max_length=256) |
|
batch_size = 16 |
|
|
|
texts = ["This is pure trash",] |
|
outputs = [] |
|
model = InferenceSession("MiniLMv2-toxic-jigsaw-lite-onnx/model_optimized_quantized.onnx", providers=['CPUExecutionProvider']) |
|
|
|
with open(os.path.join("MiniLMv2-toxic-jigsaw-lite-onnx", "config.json"), "r") as f: |
|
config = json.load(f) |
|
|
|
output_names = [output.name for output in model.get_outputs()] |
|
input_names = [input.name for input in model.get_inputs()] |
|
|
|
for subtexts in np.array_split(np.array(texts), len(texts) // batch_size + 1): |
|
encodings = tokenizer.encode_batch(list(subtexts)) |
|
inputs = { |
|
"input_ids": np.vstack( |
|
[encoding.ids for encoding in encodings], |
|
), |
|
"attention_mask": np.vstack( |
|
[encoding.attention_mask for encoding in encodings], |
|
), |
|
"token_type_ids": np.vstack( |
|
[encoding.type_ids for encoding in encodings], |
|
), |
|
} |
|
|
|
for input_name in input_names: |
|
if input_name not in inputs: |
|
raise ValueError(f"Input name {input_name} not found in inputs") |
|
|
|
inputs = {input_name: inputs[input_name] for input_name in input_names} |
|
output = np.squeeze( |
|
np.stack( |
|
model.run(output_names=output_names, input_feed=inputs) |
|
), |
|
axis=0, |
|
) |
|
outputs.append(output) |
|
|
|
outputs = np.concatenate(outputs, axis=0) |
|
scores = 1 / (1 + np.exp(-outputs)) |
|
results = [] |
|
for item in scores: |
|
labels = [] |
|
scores = [] |
|
for idx, s in enumerate(item): |
|
labels.append(config["id2label"][str(idx)]) |
|
scores.append(float(s)) |
|
results.append({"labels": labels, "scores": scores}) |
|
|
|
res = [] |
|
|
|
for result in results: |
|
joined = list(zip(result['labels'], result['scores'])) |
|
max_score = max(joined, key=lambda x: x[1]) |
|
res.append(max_score) |
|
|
|
res |
|
# [('toxic', 0.6553249955177307)] |
|
``` |
|
|
|
# Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 6e-05 |
|
- train_batch_size: 48 |
|
- eval_batch_size: 48 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
- warmup_ratio: 0.1 |
|
|
|
|
|
# Metrics (comparison with teacher model) |
|
|
|
| Teacher (params) | Student (params) | Set (metric) | Score (teacher) | Score (student) | |
|
|--------------------|-------------|----------|--------| --------| |
|
| unitary/toxic-bert (110M) | MiniLMv2-toxic-jigsaw-lite (23M) | Test (ROC_AUC) | 0.982677 | 0.9806 | |
|
|
|
# Deployment |
|
|
|
Check our [fast-nlp-text-toxicity repository](https://github.com/minuva/fast-nlp-text-toxicity) for a FastAPI and ONNX based server to deploy this model on CPU devices. |
|
|