File size: 3,193 Bytes
318689f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 |
import gradio as gr
import requests
import pandas as pd
import plotly.graph_objs as go
from transformers import pipeline
# Load ChatGPT model (adjust to use a model supported in Hugging Face Spaces)
chatgpt = pipeline("text-generation", model="gpt2") # Change "gpt2" to "chatgpt" if available
# Function to fetch and process data from GPT model
def fetch_and_process_data(prompt):
response = chatgpt(prompt, max_length=200, do_sample=True)[0]['generated_text']
return response
# Function to fetch historical price data from CoinGecko
def fetch_historical_data(coin_id, from_timestamp, to_timestamp):
url = f"https://api.coingecko.com/api/v3/coins/{coin_id}/market_chart/range?vs_currency=usd&from={from_timestamp}&to={to_timestamp}"
response = requests.get(url)
if response.status_code == 200:
data = response.json()
prices = data['prices']
return prices
else:
return f"Error fetching historical data for {coin_id}"
# Function to convert dates to timestamps
def date_to_timestamp(date_str):
return int(pd.Timestamp(date_str).timestamp())
# Function to plot historical prices using Plotly
def plot_historical_prices(coin_name, from_date, to_date):
from_timestamp = date_to_timestamp(from_date)
to_timestamp = date_to_timestamp(to_date)
prices = fetch_historical_data(coin_name, from_timestamp, to_timestamp)
if isinstance(prices, str): # In case of error
return prices
df = pd.DataFrame(prices, columns=['timestamp', 'price'])
df['date'] = pd.to_datetime(df['timestamp'], unit='ms')
fig = go.Figure()
fig.add_trace(go.Scatter(x=df['date'], y=df['price'], mode='lines', name=coin_name))
fig.update_layout(title=f'{coin_name.capitalize()} Prices from {from_date} to {to_date}', xaxis_title='Date', yaxis_title='Price (USD)')
return fig
# Top 100 Cryptocurrencies (by CoinGecko IDs)
top_100_cryptos = [
'bitcoin', 'ethereum', 'binancecoin', 'ripple', 'solana', 'cardano', 'dogecoin', 'polygon', 'polkadot', 'tron',
# Add more top coins as necessary
]
# Function to display both ChatGPT response and price chart
def combined_analysis(prompt, coin_name, from_date, to_date):
# Fetch ChatGPT response
chatgpt_response = fetch_and_process_data(prompt)
# Fetch and plot historical price data
price_chart = plot_historical_prices(coin_name, from_date, to_date)
return chatgpt_response, price_chart
# Create Gradio Interface
interface = gr.Interface(
fn=combined_analysis,
inputs=[
gr.Textbox(label="Enter a prompt for ChatGPT"),
gr.Dropdown(choices=top_100_cryptos, label="Select Cryptocurrency"),
gr.Textbox(value="2024-01-01", label="From Date (YYYY-MM-DD)"),
gr.Textbox(value="2025-12-31", label="To Date (YYYY-MM-DD)")
],
outputs=[
gr.Textbox(label="ChatGPT Response"),
gr.Plot(label="Cryptocurrency Price Chart")
],
title="ChatGPT and Cryptocurrency Analysis",
description="This tool provides real-time cryptocurrency analysis and allows you to interact with ChatGPT for insights."
)
# Launch Gradio app
interface.launch(server_name="0.0.0.0")
|