|
# Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models |
|
|
|
[[paper](https://arxiv.org/abs/2410.10733)] [[GitHub](https://github.com/mit-han-lab/efficientvit)] |
|
|
|
![demo](assets/dc_ae_demo.gif) |
|
<p align="center"> |
|
<b> Figure 1: We address the reconstruction accuracy drop of high spatial-compression autoencoders. |
|
</p> |
|
|
|
![demo](assets/dc_ae_diffusion_demo.gif) |
|
<p align="center"> |
|
<b> Figure 2: DC-AE delivers significant training and inference speedup without performance drop. |
|
</p> |
|
|
|
![demo](assets/Sana-0.6B-laptop.gif) |
|
|
|
<p align="center"> |
|
<img src="assets/dc_ae_sana.jpg" width="1200"> |
|
</p> |
|
|
|
<p align="center"> |
|
<b> Figure 3: DC-AE enables efficient text-to-image generation on the laptop. |
|
</p> |
|
|
|
## Abstract |
|
|
|
We present Deep Compression Autoencoder (DC-AE), a new family of autoencoder models for accelerating high-resolution diffusion models. Existing autoencoder models have demonstrated impressive results at a moderate spatial compression ratio (e.g., 8x), but fail to maintain satisfactory reconstruction accuracy for high spatial compression ratios (e.g., 64x). We address this challenge by introducing two key techniques: (1) Residual Autoencoding, where we design our models to learn residuals based on the space-to-channel transformed features to alleviate the optimization difficulty of high spatial-compression autoencoders; (2) Decoupled High-Resolution Adaptation, an efficient decoupled three-phases training strategy for mitigating the generalization penalty of high spatial-compression autoencoders. With these designs, we improve the autoencoder's spatial compression ratio up to 128 while maintaining the reconstruction quality. Applying our DC-AE to latent diffusion models, we achieve significant speedup without accuracy drop. For example, on ImageNet 512x512, our DC-AE provides 19.1x inference speedup and 17.9x training speedup on H100 GPU for UViT-H while achieving a better FID, compared with the widely used SD-VAE-f8 autoencoder. |
|
|
|
## Usage |
|
|
|
### Deep Compression Autoencoder |
|
|
|
```python |
|
# build DC-AE models |
|
# full DC-AE model list: https://huggingface.co/collections/mit-han-lab/dc-ae-670085b9400ad7197bb1009b |
|
from efficientvit.ae_model_zoo import DCAE_HF |
|
|
|
dc_ae = DCAE_HF.from_pretrained(f"mit-han-lab/dc-ae-f64c128-in-1.0") |
|
|
|
# encode |
|
from PIL import Image |
|
import torch |
|
import torchvision.transforms as transforms |
|
from torchvision.utils import save_image |
|
from efficientvit.apps.utils.image import DMCrop |
|
|
|
device = torch.device("cuda") |
|
dc_ae = dc_ae.to(device).eval() |
|
|
|
transform = transforms.Compose([ |
|
DMCrop(512), # resolution |
|
transforms.ToTensor(), |
|
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), |
|
]) |
|
image = Image.open("assets/fig/girl.png") |
|
x = transform(image)[None].to(device) |
|
latent = dc_ae.encode(x) |
|
print(latent.shape) |
|
|
|
# decode |
|
y = dc_ae.decode(latent) |
|
save_image(y * 0.5 + 0.5, "demo_dc_ae.png") |
|
``` |
|
|
|
### Efficient Diffusion Models with DC-AE |
|
|
|
```python |
|
# build DC-AE-Diffusion models |
|
# full DC-AE-Diffusion model list: https://huggingface.co/collections/mit-han-lab/dc-ae-diffusion-670dbb8d6b6914cf24c1a49d |
|
from efficientvit.diffusion_model_zoo import DCAE_Diffusion_HF |
|
|
|
dc_ae_diffusion = DCAE_Diffusion_HF.from_pretrained(f"mit-han-lab/dc-ae-f64c128-in-1.0-uvit-h-in-512px-train2000k") |
|
|
|
# denoising on the latent space |
|
import torch |
|
import numpy as np |
|
from torchvision.utils import save_image |
|
|
|
torch.set_grad_enabled(False) |
|
device = torch.device("cuda") |
|
dc_ae_diffusion = dc_ae_diffusion.to(device).eval() |
|
|
|
seed = 0 |
|
torch.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
eval_generator = torch.Generator(device=device) |
|
eval_generator.manual_seed(seed) |
|
|
|
prompts = torch.tensor( |
|
[279, 333, 979, 936, 933, 145, 497, 1, 248, 360, 793, 12, 387, 437, 938, 978], dtype=torch.int, device=device |
|
) |
|
num_samples = prompts.shape[0] |
|
prompts_null = 1000 * torch.ones((num_samples,), dtype=torch.int, device=device) |
|
latent_samples = dc_ae_diffusion.diffusion_model.generate(prompts, prompts_null, 6.0, eval_generator) |
|
latent_samples = latent_samples / dc_ae_diffusion.scaling_factor |
|
|
|
# decode |
|
image_samples = dc_ae_diffusion.autoencoder.decode(latent_samples) |
|
save_image(image_samples * 0.5 + 0.5, "demo_dc_ae_diffusion.png", nrow=int(np.sqrt(num_samples))) |
|
``` |
|
|
|
## Reference |
|
|
|
If DC-AE is useful or relevant to your research, please kindly recognize our contributions by citing our papers: |
|
|
|
``` |
|
@article{chen2024deep, |
|
title={Deep Compression Autoencoder for Efficient High-Resolution Diffusion Models}, |
|
author={Chen, Junyu and Cai, Han and Chen, Junsong and Xie, Enze and Yang, Shang and Tang, Haotian and Li, Muyang and Lu, Yao and Han, Song}, |
|
journal={arXiv preprint arXiv:2410.10733}, |
|
year={2024} |
|
} |
|
``` |
|
|