distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.88
  • Loss: 0.4331

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Validation Loss
2.2693 0.99 28 0.31 2.2480
1.9782 1.98 56 0.45 1.8990
1.6438 2.97 84 0.62 1.5180
1.3307 4.0 113 0.73 1.2206
1.133 4.99 141 0.76 0.9961
0.9384 5.98 169 0.78 0.8889
0.8668 6.97 197 0.79 0.7543
0.674 8.0 226 0.79 0.7433
0.5997 8.99 254 0.83 0.6194
0.5195 9.98 282 0.91 0.5685
0.401 10.97 310 0.91 0.5144
0.3151 12.0 339 0.87 0.4775
0.2653 12.99 367 0.88 0.4984
0.2182 13.98 395 0.88 0.4337
0.2036 14.97 423 0.89 0.4657
0.1925 16.0 452 0.89 0.4222
0.1807 16.99 480 0.87 0.4512
0.1626 17.98 508 0.88 0.4247
0.1388 18.97 536 0.88 0.4324
0.1718 19.82 560 0.88 0.4331

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0
Downloads last month
2
Safetensors
Model size
23.7M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mitro99/distilhubert-finetuned-gtzan_batch8_grad4_cosine

Finetuned
(430)
this model

Dataset used to train mitro99/distilhubert-finetuned-gtzan_batch8_grad4_cosine

Evaluation results