MixTAO-7Bx2-MoE
MixTAO-7Bx2-MoE is a Mixture of Experts (MoE). This model is mainly used for large model technology experiments, and increasingly perfect iterations will eventually create high-level large language models.
Prompt Template (Alpaca)
### Instruction:
<prompt> (without the <>)
### Response:
π¦ Colab
Link | Info - Model Name |
---|---|
MixTAO-7Bx2-MoE-v8.1 | |
mixtao-7bx2-moe-v8.1.Q4_K_M.gguf | GGUF of MixTAO-7Bx2-MoE-v8.1 Only Q4_K_M in https://huggingface.co/zhengr/MixTAO-7Bx2-MoE-v8.1-GGUF |
Demo Space | https://huggingface.co/spaces/zhengr/MixTAO-7Bx2-MoE-v8.1/ |
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 77.50 |
AI2 Reasoning Challenge (25-Shot) | 73.81 |
HellaSwag (10-Shot) | 89.22 |
MMLU (5-Shot) | 64.92 |
TruthfulQA (0-shot) | 78.57 |
Winogrande (5-shot) | 87.37 |
GSM8k (5-shot) | 71.11 |
- Downloads last month
- 10,726
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mixtao/MixTAO-7Bx2-MoE-v8.1
Spaces using mixtao/MixTAO-7Bx2-MoE-v8.1 2
Evaluation results
- normalized accuracy on AI2 Reasoning Challenge (25-Shot)test set Open LLM Leaderboard73.810
- normalized accuracy on HellaSwag (10-Shot)validation set Open LLM Leaderboard89.220
- accuracy on MMLU (5-Shot)test set Open LLM Leaderboard64.920
- mc2 on TruthfulQA (0-shot)validation set Open LLM Leaderboard78.570
- accuracy on Winogrande (5-shot)validation set Open LLM Leaderboard87.370
- accuracy on GSM8k (5-shot)test set Open LLM Leaderboard71.110