grandpythia-200k-70m
This model is a fine-tuned version of EleutherAI/pythia-70m-deduped on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.8419
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1766 | 0.01 | 68 | 1.2007 |
1.0903 | 0.02 | 136 | 1.1284 |
1.0809 | 0.03 | 204 | 1.0993 |
1.0928 | 0.04 | 272 | 1.0712 |
0.989 | 0.05 | 340 | 1.0473 |
1.0044 | 0.06 | 408 | 1.0373 |
0.985 | 0.07 | 476 | 1.0241 |
1.0272 | 0.08 | 544 | 1.0130 |
1.0295 | 0.09 | 612 | 1.0036 |
1.0172 | 0.1 | 680 | 0.9985 |
0.9582 | 0.11 | 748 | 0.9924 |
1.0342 | 0.12 | 816 | 0.9916 |
1.0053 | 0.13 | 884 | 0.9844 |
0.9321 | 0.14 | 952 | 0.9798 |
0.9473 | 0.15 | 1020 | 0.9727 |
0.9197 | 0.16 | 1088 | 0.9688 |
0.9827 | 0.17 | 1156 | 0.9632 |
0.9423 | 0.18 | 1224 | 0.9613 |
0.9662 | 0.19 | 1292 | 0.9578 |
0.9417 | 0.2 | 1360 | 0.9549 |
0.9501 | 0.21 | 1428 | 0.9461 |
0.9744 | 0.22 | 1496 | 0.9466 |
0.8693 | 0.23 | 1564 | 0.9394 |
0.9467 | 0.24 | 1632 | 0.9393 |
0.9274 | 0.25 | 1700 | 0.9362 |
0.8793 | 0.26 | 1768 | 0.9338 |
0.99 | 0.27 | 1836 | 0.9276 |
0.8983 | 0.28 | 1904 | 0.9291 |
0.9177 | 0.29 | 1972 | 0.9246 |
0.9586 | 0.3 | 2040 | 0.9224 |
0.9364 | 0.31 | 2108 | 0.9178 |
0.9248 | 0.32 | 2176 | 0.9175 |
0.9294 | 0.33 | 2244 | 0.9171 |
0.9142 | 0.34 | 2312 | 0.9136 |
0.9533 | 0.35 | 2380 | 0.9102 |
0.9193 | 0.36 | 2448 | 0.9094 |
0.9072 | 0.37 | 2516 | 0.9075 |
0.8927 | 0.38 | 2584 | 0.9043 |
0.9055 | 0.39 | 2652 | 0.9032 |
0.9276 | 0.4 | 2720 | 0.9030 |
0.8847 | 0.41 | 2788 | 0.8966 |
0.9449 | 0.42 | 2856 | 0.8963 |
0.8754 | 0.43 | 2924 | 0.8971 |
0.8612 | 0.44 | 2992 | 0.8935 |
0.9028 | 0.45 | 3060 | 0.8895 |
0.8641 | 0.46 | 3128 | 0.8925 |
0.8668 | 0.47 | 3196 | 0.8887 |
0.8935 | 0.48 | 3264 | 0.8863 |
0.8889 | 0.49 | 3332 | 0.8837 |
0.8854 | 0.5 | 3400 | 0.8849 |
0.8725 | 0.51 | 3468 | 0.8831 |
0.9425 | 0.52 | 3536 | 0.8796 |
0.8577 | 0.53 | 3604 | 0.8780 |
0.8281 | 0.54 | 3672 | 0.8747 |
0.9141 | 0.55 | 3740 | 0.8736 |
0.8684 | 0.56 | 3808 | 0.8738 |
0.8476 | 0.57 | 3876 | 0.8718 |
0.8761 | 0.58 | 3944 | 0.8735 |
0.8464 | 0.59 | 4012 | 0.8708 |
0.8732 | 0.6 | 4080 | 0.8681 |
0.9441 | 0.61 | 4148 | 0.8669 |
0.881 | 0.62 | 4216 | 0.8657 |
0.8635 | 0.63 | 4284 | 0.8640 |
0.827 | 0.64 | 4352 | 0.8625 |
0.9123 | 0.65 | 4420 | 0.8628 |
0.8557 | 0.66 | 4488 | 0.8605 |
0.8157 | 0.67 | 4556 | 0.8591 |
0.9008 | 0.68 | 4624 | 0.8580 |
0.8574 | 0.69 | 4692 | 0.8580 |
0.8374 | 0.7 | 4760 | 0.8563 |
0.8698 | 0.71 | 4828 | 0.8554 |
0.8817 | 0.72 | 4896 | 0.8545 |
0.8375 | 0.73 | 4964 | 0.8532 |
0.8504 | 0.74 | 5032 | 0.8524 |
0.8526 | 0.75 | 5100 | 0.8516 |
0.9306 | 0.76 | 5168 | 0.8511 |
0.7999 | 0.77 | 5236 | 0.8502 |
0.8337 | 0.78 | 5304 | 0.8495 |
0.7934 | 0.79 | 5372 | 0.8488 |
0.8159 | 0.8 | 5440 | 0.8480 |
0.7997 | 0.81 | 5508 | 0.8473 |
0.8909 | 0.82 | 5576 | 0.8470 |
0.852 | 0.83 | 5644 | 0.8461 |
0.8285 | 0.84 | 5712 | 0.8455 |
0.8437 | 0.85 | 5780 | 0.8448 |
0.8784 | 0.86 | 5848 | 0.8444 |
0.8123 | 0.87 | 5916 | 0.8440 |
0.8439 | 0.88 | 5984 | 0.8436 |
0.8847 | 0.89 | 6052 | 0.8433 |
0.8165 | 0.9 | 6120 | 0.8429 |
0.8405 | 0.91 | 6188 | 0.8427 |
0.8641 | 0.92 | 6256 | 0.8425 |
0.8536 | 0.93 | 6324 | 0.8424 |
0.8426 | 0.94 | 6392 | 0.8421 |
0.8547 | 0.95 | 6460 | 0.8421 |
0.8144 | 0.96 | 6528 | 0.8419 |
0.8475 | 0.97 | 6596 | 0.8419 |
0.8063 | 0.98 | 6664 | 0.8419 |
0.7943 | 0.99 | 6732 | 0.8419 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.