πŸ¦™πŸ§  Miniguanaco-13b

πŸ“ Article | πŸ’» Colab | πŸ“„ Script

This is a Llama-2-13b-chat-hf model fine-tuned using QLoRA (4-bit precision) on the mlabonne/guanaco-llama2-1k dataset, which is a subset of the timdettmers/openassistant-guanaco.

πŸ”§ Training

It was trained on an RTX 3090. It is mainly designed for educational purposes, not for inference. Parameters:

max_seq_length = 2048
use_nested_quant = True
bnb_4bit_compute_dtype=bfloat16
lora_r=8
lora_alpha=16
lora_dropout=0.05
per_device_train_batch_size=2

πŸ’» Usage

# pip install transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/llama-2-13b-miniguanaco"
prompt = "What is a large language model?"

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

sequences = pipeline(
    f'<s>[INST] {prompt} [/INST]',
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
    max_length=200,
)
for seq in sequences:
    print(f"Result: {seq['generated_text']}")
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train mlabonne/llama-2-13b-miniguanaco

Collection including mlabonne/llama-2-13b-miniguanaco