library_name: mlc-llm | |
base_model: microsoft/phi-2 | |
tags: | |
- mlc-llm | |
- web-llm | |
# phi-2-q4f32_1-MLC | |
This is the [phi-2](https://huggingface.co/microsoft/phi-2) model in MLC format `q4f32_1`. | |
The model can be used for projects [MLC-LLM](https://github.com/mlc-ai/mlc-llm) and [WebLLM](https://github.com/mlc-ai/web-llm). | |
## Example Usage | |
Here are some examples of using this model in MLC LLM. | |
Before running the examples, please install MLC LLM by following the [installation documentation](https://llm.mlc.ai/docs/install/mlc_llm.html#install-mlc-packages). | |
### Chat | |
In command line, run | |
```bash | |
mlc_llm chat HF://mlc-ai/phi-2-q4f32_1-MLC | |
``` | |
### REST Server | |
In command line, run | |
```bash | |
mlc_llm serve HF://mlc-ai/phi-2-q4f32_1-MLC | |
``` | |
### Python API | |
```python | |
from mlc_llm import MLCEngine | |
# Create engine | |
model = "HF://mlc-ai/phi-2-q4f32_1-MLC" | |
engine = MLCEngine(model) | |
# Run chat completion in OpenAI API. | |
for response in engine.chat.completions.create( | |
messages=[{"role": "user", "content": "What is the meaning of life?"}], | |
model=model, | |
stream=True, | |
): | |
for choice in response.choices: | |
print(choice.delta.content, end="", flush=True) | |
print("\n") | |
engine.terminate() | |
``` | |
## Documentation | |
For more information on MLC LLM project, please visit our [documentation](https://llm.mlc.ai/docs/) and [GitHub repo](http://github.com/mlc-ai/mlc-llm). | |