WaveCut's picture
3401b79409847450866bcc1a1ce3802bd73a59e9037b2fd31399f735ece707ef
046d251 verified
|
raw
history blame
900 Bytes
metadata
license: apache-2.0
library_name: transformers
inference: false
tags:
  - mlx
base_model: AIDC-AI/Marco-o1

mlx-community/AIDC-AI_Marco-o1_MLX-8bit

The Model mlx-community/AIDC-AI_Marco-o1_MLX-8bit was converted to MLX format from AIDC-AI/Marco-o1 using mlx-lm version 0.20.1.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/AIDC-AI_Marco-o1_MLX-8bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)