|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- FreedomIntelligence/medical-o1-reasoning-SFT |
|
- FreedomIntelligence/medical-o1-verifiable-problem |
|
language: |
|
- en |
|
- zh |
|
base_model: FreedomIntelligence/HuatuoGPT-o1-7B |
|
pipeline_tag: text-generation |
|
tags: |
|
- medical |
|
- mlx |
|
--- |
|
|
|
# mlx-community/HuatuoGPT-o1-7B-4bit |
|
|
|
The Model [mlx-community/HuatuoGPT-o1-7B-4bit](https://huggingface.co/mlx-community/HuatuoGPT-o1-7B-4bit) was |
|
converted to MLX format from [FreedomIntelligence/HuatuoGPT-o1-7B](https://huggingface.co/FreedomIntelligence/HuatuoGPT-o1-7B) |
|
using mlx-lm version **0.20.6**. |
|
|
|
## Use with mlx |
|
|
|
```bash |
|
pip install mlx-lm |
|
``` |
|
|
|
```python |
|
from mlx_lm import load, generate |
|
|
|
model, tokenizer = load("mlx-community/HuatuoGPT-o1-7B-4bit") |
|
|
|
prompt="hello" |
|
|
|
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None: |
|
messages = [{"role": "user", "content": prompt}] |
|
prompt = tokenizer.apply_chat_template( |
|
messages, tokenize=False, add_generation_prompt=True |
|
) |
|
|
|
response = generate(model, tokenizer, prompt=prompt, verbose=True) |
|
``` |
|
|