metadata
base_model: m42-health/Llama3-Med42-8B
language:
- en
license: llama3
license_name: llama3
pipeline_tag: text-generation
tags:
- m42
- health
- healthcare
- clinical-llm
- mlx
inference: false
mlx-community/Llama3-Med42-8B
The Model mlx-community/Llama3-Med42-8B was converted to MLX format from m42-health/Llama3-Med42-8B using mlx-lm version 0.20.1.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/Llama3-Med42-8B")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)