katopz's picture
Upload folder using huggingface_hub
5030c76 verified
---
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: mit
tags:
- mteb
- Sentence Transformers
- sentence-similarity
- sentence-transformers
- mlx
model-index:
- name: multilingual-e5-small
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 73.79104477611939
- type: ap
value: 36.9996434842022
- type: f1
value: 67.95453679103099
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (de)
type: mteb/amazon_counterfactual
config: de
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 71.64882226980728
- type: ap
value: 82.11942130026586
- type: f1
value: 69.87963421606715
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en-ext)
type: mteb/amazon_counterfactual
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 75.8095952023988
- type: ap
value: 24.46869495579561
- type: f1
value: 63.00108480037597
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (ja)
type: mteb/amazon_counterfactual
config: ja
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 64.186295503212
- type: ap
value: 15.496804690197042
- type: f1
value: 52.07153895475031
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 88.699325
- type: ap
value: 85.27039559917269
- type: f1
value: 88.65556295032513
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 44.69799999999999
- type: f1
value: 43.73187348654165
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (de)
type: mteb/amazon_reviews_multi
config: de
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 40.245999999999995
- type: f1
value: 39.3863530637684
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (es)
type: mteb/amazon_reviews_multi
config: es
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 40.394
- type: f1
value: 39.301223469483446
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (fr)
type: mteb/amazon_reviews_multi
config: fr
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 38.864
- type: f1
value: 37.97974261868003
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (ja)
type: mteb/amazon_reviews_multi
config: ja
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 37.682
- type: f1
value: 37.07399369768313
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (zh)
type: mteb/amazon_reviews_multi
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 37.504
- type: f1
value: 36.62317273874278
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 19.061
- type: map_at_10
value: 31.703
- type: map_at_100
value: 32.967
- type: map_at_1000
value: 33.001000000000005
- type: map_at_3
value: 27.466
- type: map_at_5
value: 29.564
- type: mrr_at_1
value: 19.559
- type: mrr_at_10
value: 31.874999999999996
- type: mrr_at_100
value: 33.146
- type: mrr_at_1000
value: 33.18
- type: mrr_at_3
value: 27.667
- type: mrr_at_5
value: 29.74
- type: ndcg_at_1
value: 19.061
- type: ndcg_at_10
value: 39.062999999999995
- type: ndcg_at_100
value: 45.184000000000005
- type: ndcg_at_1000
value: 46.115
- type: ndcg_at_3
value: 30.203000000000003
- type: ndcg_at_5
value: 33.953
- type: precision_at_1
value: 19.061
- type: precision_at_10
value: 6.279999999999999
- type: precision_at_100
value: 0.9129999999999999
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 12.706999999999999
- type: precision_at_5
value: 9.431000000000001
- type: recall_at_1
value: 19.061
- type: recall_at_10
value: 62.802
- type: recall_at_100
value: 91.323
- type: recall_at_1000
value: 98.72
- type: recall_at_3
value: 38.122
- type: recall_at_5
value: 47.155
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 39.22266660528253
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 30.79980849482483
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 57.8790068352054
- type: mrr
value: 71.78791276436706
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 82.36328364043163
- type: cos_sim_spearman
value: 82.26211536195868
- type: euclidean_pearson
value: 80.3183865039173
- type: euclidean_spearman
value: 79.88495276296132
- type: manhattan_pearson
value: 80.14484480692127
- type: manhattan_spearman
value: 80.39279565980743
- task:
type: BitextMining
dataset:
name: MTEB BUCC (de-en)
type: mteb/bucc-bitext-mining
config: de-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 98.0375782881002
- type: f1
value: 97.86012526096033
- type: precision
value: 97.77139874739039
- type: recall
value: 98.0375782881002
- task:
type: BitextMining
dataset:
name: MTEB BUCC (fr-en)
type: mteb/bucc-bitext-mining
config: fr-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 93.35241030156286
- type: f1
value: 92.66050333846944
- type: precision
value: 92.3306919069631
- type: recall
value: 93.35241030156286
- task:
type: BitextMining
dataset:
name: MTEB BUCC (ru-en)
type: mteb/bucc-bitext-mining
config: ru-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 94.0699688257707
- type: f1
value: 93.50236693222492
- type: precision
value: 93.22791825424315
- type: recall
value: 94.0699688257707
- task:
type: BitextMining
dataset:
name: MTEB BUCC (zh-en)
type: mteb/bucc-bitext-mining
config: zh-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 89.25750394944708
- type: f1
value: 88.79234684921889
- type: precision
value: 88.57293312269616
- type: recall
value: 89.25750394944708
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 79.41558441558442
- type: f1
value: 79.25886487487219
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 35.747820820329736
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 27.045143830596146
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 24.252999999999997
- type: map_at_10
value: 31.655916666666666
- type: map_at_100
value: 32.680749999999996
- type: map_at_1000
value: 32.79483333333334
- type: map_at_3
value: 29.43691666666666
- type: map_at_5
value: 30.717416666666665
- type: mrr_at_1
value: 28.602750000000004
- type: mrr_at_10
value: 35.56875
- type: mrr_at_100
value: 36.3595
- type: mrr_at_1000
value: 36.427749999999996
- type: mrr_at_3
value: 33.586166666666664
- type: mrr_at_5
value: 34.73641666666666
- type: ndcg_at_1
value: 28.602750000000004
- type: ndcg_at_10
value: 36.06933333333334
- type: ndcg_at_100
value: 40.70141666666667
- type: ndcg_at_1000
value: 43.24341666666667
- type: ndcg_at_3
value: 32.307916666666664
- type: ndcg_at_5
value: 34.129999999999995
- type: precision_at_1
value: 28.602750000000004
- type: precision_at_10
value: 6.097666666666667
- type: precision_at_100
value: 0.9809166666666668
- type: precision_at_1000
value: 0.13766666666666663
- type: precision_at_3
value: 14.628166666666667
- type: precision_at_5
value: 10.266916666666667
- type: recall_at_1
value: 24.252999999999997
- type: recall_at_10
value: 45.31916666666667
- type: recall_at_100
value: 66.03575000000001
- type: recall_at_1000
value: 83.94708333333334
- type: recall_at_3
value: 34.71941666666666
- type: recall_at_5
value: 39.46358333333333
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 9.024000000000001
- type: map_at_10
value: 15.644
- type: map_at_100
value: 17.154
- type: map_at_1000
value: 17.345
- type: map_at_3
value: 13.028
- type: map_at_5
value: 14.251
- type: mrr_at_1
value: 19.674
- type: mrr_at_10
value: 29.826999999999998
- type: mrr_at_100
value: 30.935000000000002
- type: mrr_at_1000
value: 30.987
- type: mrr_at_3
value: 26.645000000000003
- type: mrr_at_5
value: 28.29
- type: ndcg_at_1
value: 19.674
- type: ndcg_at_10
value: 22.545
- type: ndcg_at_100
value: 29.207
- type: ndcg_at_1000
value: 32.912
- type: ndcg_at_3
value: 17.952
- type: ndcg_at_5
value: 19.363
- type: precision_at_1
value: 19.674
- type: precision_at_10
value: 7.212000000000001
- type: precision_at_100
value: 1.435
- type: precision_at_1000
value: 0.212
- type: precision_at_3
value: 13.507
- type: precision_at_5
value: 10.397
- type: recall_at_1
value: 9.024000000000001
- type: recall_at_10
value: 28.077999999999996
- type: recall_at_100
value: 51.403
- type: recall_at_1000
value: 72.406
- type: recall_at_3
value: 16.768
- type: recall_at_5
value: 20.737
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.012
- type: map_at_10
value: 17.138
- type: map_at_100
value: 24.146
- type: map_at_1000
value: 25.622
- type: map_at_3
value: 12.552
- type: map_at_5
value: 14.435
- type: mrr_at_1
value: 62.25000000000001
- type: mrr_at_10
value: 71.186
- type: mrr_at_100
value: 71.504
- type: mrr_at_1000
value: 71.514
- type: mrr_at_3
value: 69.333
- type: mrr_at_5
value: 70.408
- type: ndcg_at_1
value: 49.75
- type: ndcg_at_10
value: 37.76
- type: ndcg_at_100
value: 42.071
- type: ndcg_at_1000
value: 49.309
- type: ndcg_at_3
value: 41.644
- type: ndcg_at_5
value: 39.812999999999995
- type: precision_at_1
value: 62.25000000000001
- type: precision_at_10
value: 30.15
- type: precision_at_100
value: 9.753
- type: precision_at_1000
value: 1.9189999999999998
- type: precision_at_3
value: 45.667
- type: precision_at_5
value: 39.15
- type: recall_at_1
value: 8.012
- type: recall_at_10
value: 22.599
- type: recall_at_100
value: 48.068
- type: recall_at_1000
value: 71.328
- type: recall_at_3
value: 14.043
- type: recall_at_5
value: 17.124
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 42.455
- type: f1
value: 37.59462649781862
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 58.092
- type: map_at_10
value: 69.586
- type: map_at_100
value: 69.968
- type: map_at_1000
value: 69.982
- type: map_at_3
value: 67.48100000000001
- type: map_at_5
value: 68.915
- type: mrr_at_1
value: 62.166
- type: mrr_at_10
value: 73.588
- type: mrr_at_100
value: 73.86399999999999
- type: mrr_at_1000
value: 73.868
- type: mrr_at_3
value: 71.6
- type: mrr_at_5
value: 72.99
- type: ndcg_at_1
value: 62.166
- type: ndcg_at_10
value: 75.27199999999999
- type: ndcg_at_100
value: 76.816
- type: ndcg_at_1000
value: 77.09700000000001
- type: ndcg_at_3
value: 71.36
- type: ndcg_at_5
value: 73.785
- type: precision_at_1
value: 62.166
- type: precision_at_10
value: 9.716
- type: precision_at_100
value: 1.065
- type: precision_at_1000
value: 0.11
- type: precision_at_3
value: 28.278
- type: precision_at_5
value: 18.343999999999998
- type: recall_at_1
value: 58.092
- type: recall_at_10
value: 88.73400000000001
- type: recall_at_100
value: 95.195
- type: recall_at_1000
value: 97.04599999999999
- type: recall_at_3
value: 78.45
- type: recall_at_5
value: 84.316
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.649
- type: map_at_10
value: 26.457000000000004
- type: map_at_100
value: 28.169
- type: map_at_1000
value: 28.352
- type: map_at_3
value: 23.305
- type: map_at_5
value: 25.169000000000004
- type: mrr_at_1
value: 32.407000000000004
- type: mrr_at_10
value: 40.922
- type: mrr_at_100
value: 41.931000000000004
- type: mrr_at_1000
value: 41.983
- type: mrr_at_3
value: 38.786
- type: mrr_at_5
value: 40.205999999999996
- type: ndcg_at_1
value: 32.407000000000004
- type: ndcg_at_10
value: 33.314
- type: ndcg_at_100
value: 40.312
- type: ndcg_at_1000
value: 43.685
- type: ndcg_at_3
value: 30.391000000000002
- type: ndcg_at_5
value: 31.525
- type: precision_at_1
value: 32.407000000000004
- type: precision_at_10
value: 8.966000000000001
- type: precision_at_100
value: 1.6019999999999999
- type: precision_at_1000
value: 0.22200000000000003
- type: precision_at_3
value: 20.165
- type: precision_at_5
value: 14.722
- type: recall_at_1
value: 16.649
- type: recall_at_10
value: 39.117000000000004
- type: recall_at_100
value: 65.726
- type: recall_at_1000
value: 85.784
- type: recall_at_3
value: 27.914
- type: recall_at_5
value: 33.289
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 36.253
- type: map_at_10
value: 56.16799999999999
- type: map_at_100
value: 57.06099999999999
- type: map_at_1000
value: 57.126
- type: map_at_3
value: 52.644999999999996
- type: map_at_5
value: 54.909
- type: mrr_at_1
value: 72.505
- type: mrr_at_10
value: 79.66
- type: mrr_at_100
value: 79.869
- type: mrr_at_1000
value: 79.88
- type: mrr_at_3
value: 78.411
- type: mrr_at_5
value: 79.19800000000001
- type: ndcg_at_1
value: 72.505
- type: ndcg_at_10
value: 65.094
- type: ndcg_at_100
value: 68.219
- type: ndcg_at_1000
value: 69.515
- type: ndcg_at_3
value: 59.99
- type: ndcg_at_5
value: 62.909000000000006
- type: precision_at_1
value: 72.505
- type: precision_at_10
value: 13.749
- type: precision_at_100
value: 1.619
- type: precision_at_1000
value: 0.179
- type: precision_at_3
value: 38.357
- type: precision_at_5
value: 25.313000000000002
- type: recall_at_1
value: 36.253
- type: recall_at_10
value: 68.744
- type: recall_at_100
value: 80.925
- type: recall_at_1000
value: 89.534
- type: recall_at_3
value: 57.535000000000004
- type: recall_at_5
value: 63.282000000000004
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 80.82239999999999
- type: ap
value: 75.65895781725314
- type: f1
value: 80.75880969095746
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 21.624
- type: map_at_10
value: 34.075
- type: map_at_100
value: 35.229
- type: map_at_1000
value: 35.276999999999994
- type: map_at_3
value: 30.245
- type: map_at_5
value: 32.42
- type: mrr_at_1
value: 22.264
- type: mrr_at_10
value: 34.638000000000005
- type: mrr_at_100
value: 35.744
- type: mrr_at_1000
value: 35.787
- type: mrr_at_3
value: 30.891000000000002
- type: mrr_at_5
value: 33.042
- type: ndcg_at_1
value: 22.264
- type: ndcg_at_10
value: 40.991
- type: ndcg_at_100
value: 46.563
- type: ndcg_at_1000
value: 47.743
- type: ndcg_at_3
value: 33.198
- type: ndcg_at_5
value: 37.069
- type: precision_at_1
value: 22.264
- type: precision_at_10
value: 6.5089999999999995
- type: precision_at_100
value: 0.9299999999999999
- type: precision_at_1000
value: 0.10300000000000001
- type: precision_at_3
value: 14.216999999999999
- type: precision_at_5
value: 10.487
- type: recall_at_1
value: 21.624
- type: recall_at_10
value: 62.303
- type: recall_at_100
value: 88.124
- type: recall_at_1000
value: 97.08
- type: recall_at_3
value: 41.099999999999994
- type: recall_at_5
value: 50.381
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 91.06703146374831
- type: f1
value: 90.86867815863172
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (de)
type: mteb/mtop_domain
config: de
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 87.46970977740209
- type: f1
value: 86.36832872036588
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (es)
type: mteb/mtop_domain
config: es
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.26951300867245
- type: f1
value: 88.93561193959502
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (fr)
type: mteb/mtop_domain
config: fr
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 84.22799874725963
- type: f1
value: 84.30490069236556
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (hi)
type: mteb/mtop_domain
config: hi
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 86.02007888131948
- type: f1
value: 85.39376041027991
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (th)
type: mteb/mtop_domain
config: th
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 85.34900542495481
- type: f1
value: 85.39859673336713
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 71.078431372549
- type: f1
value: 53.45071102002276
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (de)
type: mteb/mtop_intent
config: de
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 65.85798816568047
- type: f1
value: 46.53112748993529
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (es)
type: mteb/mtop_intent
config: es
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 67.96864576384256
- type: f1
value: 45.966703022829506
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (fr)
type: mteb/mtop_intent
config: fr
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 61.31537738803633
- type: f1
value: 45.52601712835461
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (hi)
type: mteb/mtop_intent
config: hi
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 66.29616349946218
- type: f1
value: 47.24166485726613
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (th)
type: mteb/mtop_intent
config: th
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 67.51537070524412
- type: f1
value: 49.463476319014276
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (af)
type: mteb/amazon_massive_intent
config: af
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.06792199058508
- type: f1
value: 54.094921857502285
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (am)
type: mteb/amazon_massive_intent
config: am
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 51.960322797579025
- type: f1
value: 48.547371223370945
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ar)
type: mteb/amazon_massive_intent
config: ar
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 54.425016812373904
- type: f1
value: 50.47069202054312
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (az)
type: mteb/amazon_massive_intent
config: az
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 59.798251513113655
- type: f1
value: 57.05013069086648
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (bn)
type: mteb/amazon_massive_intent
config: bn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 59.37794216543376
- type: f1
value: 56.3607992649805
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (cy)
type: mteb/amazon_massive_intent
config: cy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 46.56018829858777
- type: f1
value: 43.87319715715134
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (da)
type: mteb/amazon_massive_intent
config: da
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.9724277067922
- type: f1
value: 59.36480066245562
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (de)
type: mteb/amazon_massive_intent
config: de
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.72696704774715
- type: f1
value: 59.143595966615855
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (el)
type: mteb/amazon_massive_intent
config: el
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.5971755211836
- type: f1
value: 59.169445724946726
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 70.29589778076665
- type: f1
value: 67.7577001808977
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (es)
type: mteb/amazon_massive_intent
config: es
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.31136516476126
- type: f1
value: 64.52032955983242
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fa)
type: mteb/amazon_massive_intent
config: fa
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.54472091459314
- type: f1
value: 61.47903120066317
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fi)
type: mteb/amazon_massive_intent
config: fi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.45595158036314
- type: f1
value: 58.0891846024637
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fr)
type: mteb/amazon_massive_intent
config: fr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.47074646940149
- type: f1
value: 62.84830858877575
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (he)
type: mteb/amazon_massive_intent
config: he
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.046402151983855
- type: f1
value: 55.269074430533195
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (hi)
type: mteb/amazon_massive_intent
config: hi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.06523201075991
- type: f1
value: 61.35339643021369
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (hu)
type: mteb/amazon_massive_intent
config: hu
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 60.954942837928726
- type: f1
value: 57.07035922704846
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (hy)
type: mteb/amazon_massive_intent
config: hy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.404169468728995
- type: f1
value: 53.94259011839138
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (id)
type: mteb/amazon_massive_intent
config: id
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.16610625420309
- type: f1
value: 61.337103431499365
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (is)
type: mteb/amazon_massive_intent
config: is
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 52.262945527908535
- type: f1
value: 49.7610691598921
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (it)
type: mteb/amazon_massive_intent
config: it
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.54472091459314
- type: f1
value: 63.469099018440154
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ja)
type: mteb/amazon_massive_intent
config: ja
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.22797579018157
- type: f1
value: 64.89098471083001
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (jv)
type: mteb/amazon_massive_intent
config: jv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 50.847343644922674
- type: f1
value: 47.8536963168393
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ka)
type: mteb/amazon_massive_intent
config: ka
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 48.45326160053799
- type: f1
value: 46.370078045805556
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (km)
type: mteb/amazon_massive_intent
config: km
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 42.83120376597175
- type: f1
value: 39.68948521599982
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (kn)
type: mteb/amazon_massive_intent
config: kn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.5084061869536
- type: f1
value: 53.961876160401545
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ko)
type: mteb/amazon_massive_intent
config: ko
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.7895090786819
- type: f1
value: 61.134223684676
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (lv)
type: mteb/amazon_massive_intent
config: lv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 54.98991257565569
- type: f1
value: 52.579862862826296
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ml)
type: mteb/amazon_massive_intent
config: ml
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.90316072629456
- type: f1
value: 58.203024538290336
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (mn)
type: mteb/amazon_massive_intent
config: mn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.09818426361802
- type: f1
value: 54.22718458445455
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ms)
type: mteb/amazon_massive_intent
config: ms
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.991257565568255
- type: f1
value: 55.84892781767421
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (my)
type: mteb/amazon_massive_intent
config: my
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 55.901143241425686
- type: f1
value: 52.25264332199797
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (nb)
type: mteb/amazon_massive_intent
config: nb
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.96368527236047
- type: f1
value: 58.927243876153454
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (nl)
type: mteb/amazon_massive_intent
config: nl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.64223268325489
- type: f1
value: 62.340453718379706
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pl)
type: mteb/amazon_massive_intent
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.52589105581708
- type: f1
value: 61.661113187022174
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pt)
type: mteb/amazon_massive_intent
config: pt
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.84599865501009
- type: f1
value: 64.59342572873005
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ro)
type: mteb/amazon_massive_intent
config: ro
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 60.81035642232684
- type: f1
value: 57.5169089806797
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ru)
type: mteb/amazon_massive_intent
config: ru
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.75991930060525
- type: f1
value: 62.89531115787938
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sl)
type: mteb/amazon_massive_intent
config: sl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 56.51647612642906
- type: f1
value: 54.33154780100043
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sq)
type: mteb/amazon_massive_intent
config: sq
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.985877605917956
- type: f1
value: 54.46187524463802
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sv)
type: mteb/amazon_massive_intent
config: sv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.03026227303296
- type: f1
value: 62.34377392877748
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sw)
type: mteb/amazon_massive_intent
config: sw
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 53.567585743106925
- type: f1
value: 50.73770655983206
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ta)
type: mteb/amazon_massive_intent
config: ta
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.2595830531271
- type: f1
value: 53.657327291708626
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (te)
type: mteb/amazon_massive_intent
config: te
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.82784129119032
- type: f1
value: 54.82518072665301
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (th)
type: mteb/amazon_massive_intent
config: th
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.06859448554137
- type: f1
value: 63.00185280500495
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (tl)
type: mteb/amazon_massive_intent
config: tl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.91055817081371
- type: f1
value: 55.54116301224262
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (tr)
type: mteb/amazon_massive_intent
config: tr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.54404841963686
- type: f1
value: 59.57650946030184
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ur)
type: mteb/amazon_massive_intent
config: ur
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 59.27706792199059
- type: f1
value: 56.50010066083435
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (vi)
type: mteb/amazon_massive_intent
config: vi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.0719569603228
- type: f1
value: 61.817075925647956
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (zh-CN)
type: mteb/amazon_massive_intent
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.23806321452591
- type: f1
value: 65.24917026029749
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (zh-TW)
type: mteb/amazon_massive_intent
config: zh-TW
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.53530598520511
- type: f1
value: 61.71131132295768
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (af)
type: mteb/amazon_massive_scenario
config: af
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.04303967720243
- type: f1
value: 60.3950085685985
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (am)
type: mteb/amazon_massive_scenario
config: am
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 56.83591123066578
- type: f1
value: 54.95059828830849
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ar)
type: mteb/amazon_massive_scenario
config: ar
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 59.62340282447881
- type: f1
value: 59.525159996498225
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (az)
type: mteb/amazon_massive_scenario
config: az
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 60.85406859448555
- type: f1
value: 59.129299095681276
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (bn)
type: mteb/amazon_massive_scenario
config: bn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 62.76731674512441
- type: f1
value: 61.159560612627715
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (cy)
type: mteb/amazon_massive_scenario
config: cy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 50.181573638197705
- type: f1
value: 46.98422176289957
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (da)
type: mteb/amazon_massive_scenario
config: da
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.92737054472092
- type: f1
value: 67.69135611952979
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (de)
type: mteb/amazon_massive_scenario
config: de
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.18964357767318
- type: f1
value: 68.46106138186214
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (el)
type: mteb/amazon_massive_scenario
config: el
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.0712844653665
- type: f1
value: 66.75545422473901
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.4754539340955
- type: f1
value: 74.38427146553252
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (es)
type: mteb/amazon_massive_scenario
config: es
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.82515131136518
- type: f1
value: 69.63516462173847
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fa)
type: mteb/amazon_massive_scenario
config: fa
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.70880968392737
- type: f1
value: 67.45420662567926
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fi)
type: mteb/amazon_massive_scenario
config: fi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 65.95494283792871
- type: f1
value: 65.06191009049222
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fr)
type: mteb/amazon_massive_scenario
config: fr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.75924680564896
- type: f1
value: 68.30833379585945
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (he)
type: mteb/amazon_massive_scenario
config: he
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.806321452589096
- type: f1
value: 63.273048243765054
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (hi)
type: mteb/amazon_massive_scenario
config: hi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.68997982515133
- type: f1
value: 66.54703855381324
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (hu)
type: mteb/amazon_massive_scenario
config: hu
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.46940147948891
- type: f1
value: 65.91017343463396
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (hy)
type: mteb/amazon_massive_scenario
config: hy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 59.49899125756556
- type: f1
value: 57.90333469917769
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (id)
type: mteb/amazon_massive_scenario
config: id
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.9219905850706
- type: f1
value: 67.23169403762938
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (is)
type: mteb/amazon_massive_scenario
config: is
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 56.486213853396094
- type: f1
value: 54.85282355583758
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (it)
type: mteb/amazon_massive_scenario
config: it
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.04169468728985
- type: f1
value: 68.83833333320462
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ja)
type: mteb/amazon_massive_scenario
config: ja
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.88702084734365
- type: f1
value: 74.04474735232299
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (jv)
type: mteb/amazon_massive_scenario
config: jv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 56.63416274377943
- type: f1
value: 55.11332211687954
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ka)
type: mteb/amazon_massive_scenario
config: ka
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 52.23604572965702
- type: f1
value: 50.86529813991055
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (km)
type: mteb/amazon_massive_scenario
config: km
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 46.62407531943511
- type: f1
value: 43.63485467164535
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (kn)
type: mteb/amazon_massive_scenario
config: kn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 59.15601882985878
- type: f1
value: 57.522837510959924
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ko)
type: mteb/amazon_massive_scenario
config: ko
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.84532616005382
- type: f1
value: 69.60021127179697
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (lv)
type: mteb/amazon_massive_scenario
config: lv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 56.65770006724949
- type: f1
value: 55.84219135523227
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ml)
type: mteb/amazon_massive_scenario
config: ml
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.53665097511768
- type: f1
value: 65.09087787792639
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (mn)
type: mteb/amazon_massive_scenario
config: mn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 59.31405514458642
- type: f1
value: 58.06135303831491
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ms)
type: mteb/amazon_massive_scenario
config: ms
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 64.88231338264964
- type: f1
value: 62.751099407787926
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (my)
type: mteb/amazon_massive_scenario
config: my
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 58.86012104909213
- type: f1
value: 56.29118323058282
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (nb)
type: mteb/amazon_massive_scenario
config: nb
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.37390719569602
- type: f1
value: 66.27922244885102
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (nl)
type: mteb/amazon_massive_scenario
config: nl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.8675184936113
- type: f1
value: 70.22146529932019
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pl)
type: mteb/amazon_massive_scenario
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.2212508406187
- type: f1
value: 67.77454802056282
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pt)
type: mteb/amazon_massive_scenario
config: pt
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.18090114324143
- type: f1
value: 68.03737625431621
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ro)
type: mteb/amazon_massive_scenario
config: ro
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 64.65030262273034
- type: f1
value: 63.792945486912856
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ru)
type: mteb/amazon_massive_scenario
config: ru
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.48217888365838
- type: f1
value: 69.96028997292197
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sl)
type: mteb/amazon_massive_scenario
config: sl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 60.17821116341627
- type: f1
value: 59.3935969827171
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sq)
type: mteb/amazon_massive_scenario
config: sq
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 62.86146603900471
- type: f1
value: 60.133692735032376
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sv)
type: mteb/amazon_massive_scenario
config: sv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.89441829186282
- type: f1
value: 70.03064076194089
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sw)
type: mteb/amazon_massive_scenario
config: sw
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 58.15063887020847
- type: f1
value: 56.23326278499678
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ta)
type: mteb/amazon_massive_scenario
config: ta
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 59.43846671149966
- type: f1
value: 57.70440450281974
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (te)
type: mteb/amazon_massive_scenario
config: te
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 60.8507061197041
- type: f1
value: 59.22916396061171
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (th)
type: mteb/amazon_massive_scenario
config: th
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.65568258238063
- type: f1
value: 69.90736239440633
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (tl)
type: mteb/amazon_massive_scenario
config: tl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 60.8843308675185
- type: f1
value: 59.30332663713599
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (tr)
type: mteb/amazon_massive_scenario
config: tr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.05312710154674
- type: f1
value: 67.44024062594775
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ur)
type: mteb/amazon_massive_scenario
config: ur
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 62.111634162743776
- type: f1
value: 60.89083013084519
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (vi)
type: mteb/amazon_massive_scenario
config: vi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.44115669132482
- type: f1
value: 67.92227541674552
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (zh-CN)
type: mteb/amazon_massive_scenario
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.4687289845326
- type: f1
value: 74.16376793486025
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (zh-TW)
type: mteb/amazon_massive_scenario
config: zh-TW
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.31876260928043
- type: f1
value: 68.5246745215607
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 30.90431696479766
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 27.259158476693774
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 30.28445330838555
- type: mrr
value: 31.15758529581164
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.353
- type: map_at_10
value: 11.565
- type: map_at_100
value: 14.097000000000001
- type: map_at_1000
value: 15.354999999999999
- type: map_at_3
value: 8.749
- type: map_at_5
value: 9.974
- type: mrr_at_1
value: 42.105
- type: mrr_at_10
value: 50.589
- type: mrr_at_100
value: 51.187000000000005
- type: mrr_at_1000
value: 51.233
- type: mrr_at_3
value: 48.246
- type: mrr_at_5
value: 49.546
- type: ndcg_at_1
value: 40.402
- type: ndcg_at_10
value: 31.009999999999998
- type: ndcg_at_100
value: 28.026
- type: ndcg_at_1000
value: 36.905
- type: ndcg_at_3
value: 35.983
- type: ndcg_at_5
value: 33.764
- type: precision_at_1
value: 42.105
- type: precision_at_10
value: 22.786
- type: precision_at_100
value: 6.916
- type: precision_at_1000
value: 1.981
- type: precision_at_3
value: 33.333
- type: precision_at_5
value: 28.731
- type: recall_at_1
value: 5.353
- type: recall_at_10
value: 15.039
- type: recall_at_100
value: 27.348
- type: recall_at_1000
value: 59.453
- type: recall_at_3
value: 9.792
- type: recall_at_5
value: 11.882
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 33.852
- type: map_at_10
value: 48.924
- type: map_at_100
value: 49.854
- type: map_at_1000
value: 49.886
- type: map_at_3
value: 44.9
- type: map_at_5
value: 47.387
- type: mrr_at_1
value: 38.035999999999994
- type: mrr_at_10
value: 51.644
- type: mrr_at_100
value: 52.339
- type: mrr_at_1000
value: 52.35999999999999
- type: mrr_at_3
value: 48.421
- type: mrr_at_5
value: 50.468999999999994
- type: ndcg_at_1
value: 38.007000000000005
- type: ndcg_at_10
value: 56.293000000000006
- type: ndcg_at_100
value: 60.167
- type: ndcg_at_1000
value: 60.916000000000004
- type: ndcg_at_3
value: 48.903999999999996
- type: ndcg_at_5
value: 52.978
- type: precision_at_1
value: 38.007000000000005
- type: precision_at_10
value: 9.041
- type: precision_at_100
value: 1.1199999999999999
- type: precision_at_1000
value: 0.11900000000000001
- type: precision_at_3
value: 22.084
- type: precision_at_5
value: 15.608
- type: recall_at_1
value: 33.852
- type: recall_at_10
value: 75.893
- type: recall_at_100
value: 92.589
- type: recall_at_1000
value: 98.153
- type: recall_at_3
value: 56.969
- type: recall_at_5
value: 66.283
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 69.174
- type: map_at_10
value: 82.891
- type: map_at_100
value: 83.545
- type: map_at_1000
value: 83.56700000000001
- type: map_at_3
value: 79.944
- type: map_at_5
value: 81.812
- type: mrr_at_1
value: 79.67999999999999
- type: mrr_at_10
value: 86.279
- type: mrr_at_100
value: 86.39
- type: mrr_at_1000
value: 86.392
- type: mrr_at_3
value: 85.21
- type: mrr_at_5
value: 85.92999999999999
- type: ndcg_at_1
value: 79.69000000000001
- type: ndcg_at_10
value: 86.929
- type: ndcg_at_100
value: 88.266
- type: ndcg_at_1000
value: 88.428
- type: ndcg_at_3
value: 83.899
- type: ndcg_at_5
value: 85.56700000000001
- type: precision_at_1
value: 79.69000000000001
- type: precision_at_10
value: 13.161000000000001
- type: precision_at_100
value: 1.513
- type: precision_at_1000
value: 0.156
- type: precision_at_3
value: 36.603
- type: precision_at_5
value: 24.138
- type: recall_at_1
value: 69.174
- type: recall_at_10
value: 94.529
- type: recall_at_100
value: 99.15
- type: recall_at_1000
value: 99.925
- type: recall_at_3
value: 85.86200000000001
- type: recall_at_5
value: 90.501
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 39.13064340585255
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 58.97884249325877
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.4680000000000004
- type: map_at_10
value: 7.865
- type: map_at_100
value: 9.332
- type: map_at_1000
value: 9.587
- type: map_at_3
value: 5.800000000000001
- type: map_at_5
value: 6.8790000000000004
- type: mrr_at_1
value: 17.0
- type: mrr_at_10
value: 25.629
- type: mrr_at_100
value: 26.806
- type: mrr_at_1000
value: 26.889000000000003
- type: mrr_at_3
value: 22.8
- type: mrr_at_5
value: 24.26
- type: ndcg_at_1
value: 17.0
- type: ndcg_at_10
value: 13.895
- type: ndcg_at_100
value: 20.491999999999997
- type: ndcg_at_1000
value: 25.759999999999998
- type: ndcg_at_3
value: 13.347999999999999
- type: ndcg_at_5
value: 11.61
- type: precision_at_1
value: 17.0
- type: precision_at_10
value: 7.090000000000001
- type: precision_at_100
value: 1.669
- type: precision_at_1000
value: 0.294
- type: precision_at_3
value: 12.3
- type: precision_at_5
value: 10.02
- type: recall_at_1
value: 3.4680000000000004
- type: recall_at_10
value: 14.363000000000001
- type: recall_at_100
value: 33.875
- type: recall_at_1000
value: 59.711999999999996
- type: recall_at_3
value: 7.483
- type: recall_at_5
value: 10.173
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 83.04084311714061
- type: cos_sim_spearman
value: 77.51342467443078
- type: euclidean_pearson
value: 80.0321166028479
- type: euclidean_spearman
value: 77.29249114733226
- type: manhattan_pearson
value: 80.03105964262431
- type: manhattan_spearman
value: 77.22373689514794
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 84.1680158034387
- type: cos_sim_spearman
value: 76.55983344071117
- type: euclidean_pearson
value: 79.75266678300143
- type: euclidean_spearman
value: 75.34516823467025
- type: manhattan_pearson
value: 79.75959151517357
- type: manhattan_spearman
value: 75.42330344141912
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 76.48898993209346
- type: cos_sim_spearman
value: 76.96954120323366
- type: euclidean_pearson
value: 76.94139109279668
- type: euclidean_spearman
value: 76.85860283201711
- type: manhattan_pearson
value: 76.6944095091912
- type: manhattan_spearman
value: 76.61096912972553
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 77.85082366246944
- type: cos_sim_spearman
value: 75.52053350101731
- type: euclidean_pearson
value: 77.1165845070926
- type: euclidean_spearman
value: 75.31216065884388
- type: manhattan_pearson
value: 77.06193941833494
- type: manhattan_spearman
value: 75.31003701700112
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 86.36305246526497
- type: cos_sim_spearman
value: 87.11704613927415
- type: euclidean_pearson
value: 86.04199125810939
- type: euclidean_spearman
value: 86.51117572414263
- type: manhattan_pearson
value: 86.0805106816633
- type: manhattan_spearman
value: 86.52798366512229
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 82.18536255599724
- type: cos_sim_spearman
value: 83.63377151025418
- type: euclidean_pearson
value: 83.24657467993141
- type: euclidean_spearman
value: 84.02751481993825
- type: manhattan_pearson
value: 83.11941806582371
- type: manhattan_spearman
value: 83.84251281019304
- task:
type: STS
dataset:
name: MTEB STS17 (ko-ko)
type: mteb/sts17-crosslingual-sts
config: ko-ko
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 78.95816528475514
- type: cos_sim_spearman
value: 78.86607380120462
- type: euclidean_pearson
value: 78.51268699230545
- type: euclidean_spearman
value: 79.11649316502229
- type: manhattan_pearson
value: 78.32367302808157
- type: manhattan_spearman
value: 78.90277699624637
- task:
type: STS
dataset:
name: MTEB STS17 (ar-ar)
type: mteb/sts17-crosslingual-sts
config: ar-ar
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 72.89126914997624
- type: cos_sim_spearman
value: 73.0296921832678
- type: euclidean_pearson
value: 71.50385903677738
- type: euclidean_spearman
value: 73.13368899716289
- type: manhattan_pearson
value: 71.47421463379519
- type: manhattan_spearman
value: 73.03383242946575
- task:
type: STS
dataset:
name: MTEB STS17 (en-ar)
type: mteb/sts17-crosslingual-sts
config: en-ar
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 59.22923684492637
- type: cos_sim_spearman
value: 57.41013211368396
- type: euclidean_pearson
value: 61.21107388080905
- type: euclidean_spearman
value: 60.07620768697254
- type: manhattan_pearson
value: 59.60157142786555
- type: manhattan_spearman
value: 59.14069604103739
- task:
type: STS
dataset:
name: MTEB STS17 (en-de)
type: mteb/sts17-crosslingual-sts
config: en-de
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 76.24345978774299
- type: cos_sim_spearman
value: 77.24225743830719
- type: euclidean_pearson
value: 76.66226095469165
- type: euclidean_spearman
value: 77.60708820493146
- type: manhattan_pearson
value: 76.05303324760429
- type: manhattan_spearman
value: 76.96353149912348
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 85.50879160160852
- type: cos_sim_spearman
value: 86.43594662965224
- type: euclidean_pearson
value: 86.06846012826577
- type: euclidean_spearman
value: 86.02041395794136
- type: manhattan_pearson
value: 86.10916255616904
- type: manhattan_spearman
value: 86.07346068198953
- task:
type: STS
dataset:
name: MTEB STS17 (en-tr)
type: mteb/sts17-crosslingual-sts
config: en-tr
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 58.39803698977196
- type: cos_sim_spearman
value: 55.96910950423142
- type: euclidean_pearson
value: 58.17941175613059
- type: euclidean_spearman
value: 55.03019330522745
- type: manhattan_pearson
value: 57.333358138183286
- type: manhattan_spearman
value: 54.04614023149965
- task:
type: STS
dataset:
name: MTEB STS17 (es-en)
type: mteb/sts17-crosslingual-sts
config: es-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 70.98304089637197
- type: cos_sim_spearman
value: 72.44071656215888
- type: euclidean_pearson
value: 72.19224359033983
- type: euclidean_spearman
value: 73.89871188913025
- type: manhattan_pearson
value: 71.21098311547406
- type: manhattan_spearman
value: 72.93405764824821
- task:
type: STS
dataset:
name: MTEB STS17 (es-es)
type: mteb/sts17-crosslingual-sts
config: es-es
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 85.99792397466308
- type: cos_sim_spearman
value: 84.83824377879495
- type: euclidean_pearson
value: 85.70043288694438
- type: euclidean_spearman
value: 84.70627558703686
- type: manhattan_pearson
value: 85.89570850150801
- type: manhattan_spearman
value: 84.95806105313007
- task:
type: STS
dataset:
name: MTEB STS17 (fr-en)
type: mteb/sts17-crosslingual-sts
config: fr-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 72.21850322994712
- type: cos_sim_spearman
value: 72.28669398117248
- type: euclidean_pearson
value: 73.40082510412948
- type: euclidean_spearman
value: 73.0326539281865
- type: manhattan_pearson
value: 71.8659633964841
- type: manhattan_spearman
value: 71.57817425823303
- task:
type: STS
dataset:
name: MTEB STS17 (it-en)
type: mteb/sts17-crosslingual-sts
config: it-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 75.80921368595645
- type: cos_sim_spearman
value: 77.33209091229315
- type: euclidean_pearson
value: 76.53159540154829
- type: euclidean_spearman
value: 78.17960842810093
- type: manhattan_pearson
value: 76.13530186637601
- type: manhattan_spearman
value: 78.00701437666875
- task:
type: STS
dataset:
name: MTEB STS17 (nl-en)
type: mteb/sts17-crosslingual-sts
config: nl-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 74.74980608267349
- type: cos_sim_spearman
value: 75.37597374318821
- type: euclidean_pearson
value: 74.90506081911661
- type: euclidean_spearman
value: 75.30151613124521
- type: manhattan_pearson
value: 74.62642745918002
- type: manhattan_spearman
value: 75.18619716592303
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 59.632662289205584
- type: cos_sim_spearman
value: 60.938543391610914
- type: euclidean_pearson
value: 62.113200529767056
- type: euclidean_spearman
value: 61.410312633261164
- type: manhattan_pearson
value: 61.75494698945686
- type: manhattan_spearman
value: 60.92726195322362
- task:
type: STS
dataset:
name: MTEB STS22 (de)
type: mteb/sts22-crosslingual-sts
config: de
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 45.283470551557244
- type: cos_sim_spearman
value: 53.44833015864201
- type: euclidean_pearson
value: 41.17892011120893
- type: euclidean_spearman
value: 53.81441383126767
- type: manhattan_pearson
value: 41.17482200420659
- type: manhattan_spearman
value: 53.82180269276363
- task:
type: STS
dataset:
name: MTEB STS22 (es)
type: mteb/sts22-crosslingual-sts
config: es
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 60.5069165306236
- type: cos_sim_spearman
value: 66.87803259033826
- type: euclidean_pearson
value: 63.5428979418236
- type: euclidean_spearman
value: 66.9293576586897
- type: manhattan_pearson
value: 63.59789526178922
- type: manhattan_spearman
value: 66.86555009875066
- task:
type: STS
dataset:
name: MTEB STS22 (pl)
type: mteb/sts22-crosslingual-sts
config: pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 28.23026196280264
- type: cos_sim_spearman
value: 35.79397812652861
- type: euclidean_pearson
value: 17.828102102767353
- type: euclidean_spearman
value: 35.721501145568894
- type: manhattan_pearson
value: 17.77134274219677
- type: manhattan_spearman
value: 35.98107902846267
- task:
type: STS
dataset:
name: MTEB STS22 (tr)
type: mteb/sts22-crosslingual-sts
config: tr
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 56.51946541393812
- type: cos_sim_spearman
value: 63.714686006214485
- type: euclidean_pearson
value: 58.32104651305898
- type: euclidean_spearman
value: 62.237110895702216
- type: manhattan_pearson
value: 58.579416468759185
- type: manhattan_spearman
value: 62.459738981727
- task:
type: STS
dataset:
name: MTEB STS22 (ar)
type: mteb/sts22-crosslingual-sts
config: ar
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 48.76009839569795
- type: cos_sim_spearman
value: 56.65188431953149
- type: euclidean_pearson
value: 50.997682160915595
- type: euclidean_spearman
value: 55.99910008818135
- type: manhattan_pearson
value: 50.76220659606342
- type: manhattan_spearman
value: 55.517347595391456
- task:
type: STS
dataset:
name: MTEB STS22 (ru)
type: mteb/sts22-crosslingual-sts
config: ru
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 51.232731157702425
- type: cos_sim_spearman
value: 59.89531877658345
- type: euclidean_pearson
value: 49.937914570348376
- type: euclidean_spearman
value: 60.220905659334036
- type: manhattan_pearson
value: 50.00987996844193
- type: manhattan_spearman
value: 60.081341480977926
- task:
type: STS
dataset:
name: MTEB STS22 (zh)
type: mteb/sts22-crosslingual-sts
config: zh
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 54.717524559088005
- type: cos_sim_spearman
value: 66.83570886252286
- type: euclidean_pearson
value: 58.41338625505467
- type: euclidean_spearman
value: 66.68991427704938
- type: manhattan_pearson
value: 58.78638572916807
- type: manhattan_spearman
value: 66.58684161046335
- task:
type: STS
dataset:
name: MTEB STS22 (fr)
type: mteb/sts22-crosslingual-sts
config: fr
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 73.2962042954962
- type: cos_sim_spearman
value: 76.58255504852025
- type: euclidean_pearson
value: 75.70983192778257
- type: euclidean_spearman
value: 77.4547684870542
- type: manhattan_pearson
value: 75.75565853870485
- type: manhattan_spearman
value: 76.90208974949428
- task:
type: STS
dataset:
name: MTEB STS22 (de-en)
type: mteb/sts22-crosslingual-sts
config: de-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 54.47396266924846
- type: cos_sim_spearman
value: 56.492267162048606
- type: euclidean_pearson
value: 55.998505203070195
- type: euclidean_spearman
value: 56.46447012960222
- type: manhattan_pearson
value: 54.873172394430995
- type: manhattan_spearman
value: 56.58111534551218
- task:
type: STS
dataset:
name: MTEB STS22 (es-en)
type: mteb/sts22-crosslingual-sts
config: es-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 69.87177267688686
- type: cos_sim_spearman
value: 74.57160943395763
- type: euclidean_pearson
value: 70.88330406826788
- type: euclidean_spearman
value: 74.29767636038422
- type: manhattan_pearson
value: 71.38245248369536
- type: manhattan_spearman
value: 74.53102232732175
- task:
type: STS
dataset:
name: MTEB STS22 (it)
type: mteb/sts22-crosslingual-sts
config: it
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 72.80225656959544
- type: cos_sim_spearman
value: 76.52646173725735
- type: euclidean_pearson
value: 73.95710720200799
- type: euclidean_spearman
value: 76.54040031984111
- type: manhattan_pearson
value: 73.89679971946774
- type: manhattan_spearman
value: 76.60886958161574
- task:
type: STS
dataset:
name: MTEB STS22 (pl-en)
type: mteb/sts22-crosslingual-sts
config: pl-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 70.70844249898789
- type: cos_sim_spearman
value: 72.68571783670241
- type: euclidean_pearson
value: 72.38800772441031
- type: euclidean_spearman
value: 72.86804422703312
- type: manhattan_pearson
value: 71.29840508203515
- type: manhattan_spearman
value: 71.86264441749513
- task:
type: STS
dataset:
name: MTEB STS22 (zh-en)
type: mteb/sts22-crosslingual-sts
config: zh-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 58.647478923935694
- type: cos_sim_spearman
value: 63.74453623540931
- type: euclidean_pearson
value: 59.60138032437505
- type: euclidean_spearman
value: 63.947930832166065
- type: manhattan_pearson
value: 58.59735509491861
- type: manhattan_spearman
value: 62.082503844627404
- task:
type: STS
dataset:
name: MTEB STS22 (es-it)
type: mteb/sts22-crosslingual-sts
config: es-it
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 65.8722516867162
- type: cos_sim_spearman
value: 71.81208592523012
- type: euclidean_pearson
value: 67.95315252165956
- type: euclidean_spearman
value: 73.00749822046009
- type: manhattan_pearson
value: 68.07884688638924
- type: manhattan_spearman
value: 72.34210325803069
- task:
type: STS
dataset:
name: MTEB STS22 (de-fr)
type: mteb/sts22-crosslingual-sts
config: de-fr
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 54.5405814240949
- type: cos_sim_spearman
value: 60.56838649023775
- type: euclidean_pearson
value: 53.011731611314104
- type: euclidean_spearman
value: 58.533194841668426
- type: manhattan_pearson
value: 53.623067729338494
- type: manhattan_spearman
value: 58.018756154446926
- task:
type: STS
dataset:
name: MTEB STS22 (de-pl)
type: mteb/sts22-crosslingual-sts
config: de-pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 13.611046866216112
- type: cos_sim_spearman
value: 28.238192909158492
- type: euclidean_pearson
value: 22.16189199885129
- type: euclidean_spearman
value: 35.012895679076564
- type: manhattan_pearson
value: 21.969771178698387
- type: manhattan_spearman
value: 32.456985088607475
- task:
type: STS
dataset:
name: MTEB STS22 (fr-pl)
type: mteb/sts22-crosslingual-sts
config: fr-pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 74.58077407011655
- type: cos_sim_spearman
value: 84.51542547285167
- type: euclidean_pearson
value: 74.64613843596234
- type: euclidean_spearman
value: 84.51542547285167
- type: manhattan_pearson
value: 75.15335973101396
- type: manhattan_spearman
value: 84.51542547285167
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 82.0739825531578
- type: cos_sim_spearman
value: 84.01057479311115
- type: euclidean_pearson
value: 83.85453227433344
- type: euclidean_spearman
value: 84.01630226898655
- type: manhattan_pearson
value: 83.75323603028978
- type: manhattan_spearman
value: 83.89677983727685
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 78.12945623123957
- type: mrr
value: 93.87738713719106
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 52.983000000000004
- type: map_at_10
value: 62.946000000000005
- type: map_at_100
value: 63.514
- type: map_at_1000
value: 63.554
- type: map_at_3
value: 60.183
- type: map_at_5
value: 61.672000000000004
- type: mrr_at_1
value: 55.667
- type: mrr_at_10
value: 64.522
- type: mrr_at_100
value: 64.957
- type: mrr_at_1000
value: 64.995
- type: mrr_at_3
value: 62.388999999999996
- type: mrr_at_5
value: 63.639
- type: ndcg_at_1
value: 55.667
- type: ndcg_at_10
value: 67.704
- type: ndcg_at_100
value: 70.299
- type: ndcg_at_1000
value: 71.241
- type: ndcg_at_3
value: 62.866
- type: ndcg_at_5
value: 65.16999999999999
- type: precision_at_1
value: 55.667
- type: precision_at_10
value: 9.033
- type: precision_at_100
value: 1.053
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 24.444
- type: precision_at_5
value: 16.133
- type: recall_at_1
value: 52.983000000000004
- type: recall_at_10
value: 80.656
- type: recall_at_100
value: 92.5
- type: recall_at_1000
value: 99.667
- type: recall_at_3
value: 67.744
- type: recall_at_5
value: 73.433
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.72772277227723
- type: cos_sim_ap
value: 92.17845897992215
- type: cos_sim_f1
value: 85.9746835443038
- type: cos_sim_precision
value: 87.07692307692308
- type: cos_sim_recall
value: 84.89999999999999
- type: dot_accuracy
value: 99.3039603960396
- type: dot_ap
value: 60.70244020124878
- type: dot_f1
value: 59.92742353551063
- type: dot_precision
value: 62.21743810548978
- type: dot_recall
value: 57.8
- type: euclidean_accuracy
value: 99.71683168316832
- type: euclidean_ap
value: 91.53997039964659
- type: euclidean_f1
value: 84.88372093023257
- type: euclidean_precision
value: 90.02242152466367
- type: euclidean_recall
value: 80.30000000000001
- type: manhattan_accuracy
value: 99.72376237623763
- type: manhattan_ap
value: 91.80756777790289
- type: manhattan_f1
value: 85.48468106479157
- type: manhattan_precision
value: 85.8728557013118
- type: manhattan_recall
value: 85.1
- type: max_accuracy
value: 99.72772277227723
- type: max_ap
value: 92.17845897992215
- type: max_f1
value: 85.9746835443038
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 53.52464042600003
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 32.071631948736
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 49.19552407604654
- type: mrr
value: 49.95269130379425
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 29.345293033095427
- type: cos_sim_spearman
value: 29.976931423258403
- type: dot_pearson
value: 27.047078008958408
- type: dot_spearman
value: 27.75894368380218
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.22
- type: map_at_10
value: 1.706
- type: map_at_100
value: 9.634
- type: map_at_1000
value: 23.665
- type: map_at_3
value: 0.5950000000000001
- type: map_at_5
value: 0.95
- type: mrr_at_1
value: 86.0
- type: mrr_at_10
value: 91.8
- type: mrr_at_100
value: 91.8
- type: mrr_at_1000
value: 91.8
- type: mrr_at_3
value: 91.0
- type: mrr_at_5
value: 91.8
- type: ndcg_at_1
value: 80.0
- type: ndcg_at_10
value: 72.573
- type: ndcg_at_100
value: 53.954
- type: ndcg_at_1000
value: 47.760999999999996
- type: ndcg_at_3
value: 76.173
- type: ndcg_at_5
value: 75.264
- type: precision_at_1
value: 86.0
- type: precision_at_10
value: 76.4
- type: precision_at_100
value: 55.50000000000001
- type: precision_at_1000
value: 21.802
- type: precision_at_3
value: 81.333
- type: precision_at_5
value: 80.4
- type: recall_at_1
value: 0.22
- type: recall_at_10
value: 1.925
- type: recall_at_100
value: 12.762
- type: recall_at_1000
value: 44.946000000000005
- type: recall_at_3
value: 0.634
- type: recall_at_5
value: 1.051
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (sqi-eng)
type: mteb/tatoeba-bitext-mining
config: sqi-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.0
- type: f1
value: 88.55666666666666
- type: precision
value: 87.46166666666667
- type: recall
value: 91.0
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fry-eng)
type: mteb/tatoeba-bitext-mining
config: fry-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 57.22543352601156
- type: f1
value: 51.03220478943021
- type: precision
value: 48.8150289017341
- type: recall
value: 57.22543352601156
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kur-eng)
type: mteb/tatoeba-bitext-mining
config: kur-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 46.58536585365854
- type: f1
value: 39.66870798578116
- type: precision
value: 37.416085946573745
- type: recall
value: 46.58536585365854
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tur-eng)
type: mteb/tatoeba-bitext-mining
config: tur-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.7
- type: f1
value: 86.77999999999999
- type: precision
value: 85.45333333333332
- type: recall
value: 89.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (deu-eng)
type: mteb/tatoeba-bitext-mining
config: deu-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.39999999999999
- type: f1
value: 96.58333333333331
- type: precision
value: 96.2
- type: recall
value: 97.39999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nld-eng)
type: mteb/tatoeba-bitext-mining
config: nld-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.4
- type: f1
value: 90.3
- type: precision
value: 89.31666666666668
- type: recall
value: 92.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ron-eng)
type: mteb/tatoeba-bitext-mining
config: ron-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 86.9
- type: f1
value: 83.67190476190476
- type: precision
value: 82.23333333333332
- type: recall
value: 86.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ang-eng)
type: mteb/tatoeba-bitext-mining
config: ang-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 50.0
- type: f1
value: 42.23229092632078
- type: precision
value: 39.851634683724235
- type: recall
value: 50.0
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ido-eng)
type: mteb/tatoeba-bitext-mining
config: ido-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 76.3
- type: f1
value: 70.86190476190477
- type: precision
value: 68.68777777777777
- type: recall
value: 76.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (jav-eng)
type: mteb/tatoeba-bitext-mining
config: jav-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 57.073170731707314
- type: f1
value: 50.658958927251604
- type: precision
value: 48.26480836236933
- type: recall
value: 57.073170731707314
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (isl-eng)
type: mteb/tatoeba-bitext-mining
config: isl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 68.2
- type: f1
value: 62.156507936507936
- type: precision
value: 59.84964285714286
- type: recall
value: 68.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (slv-eng)
type: mteb/tatoeba-bitext-mining
config: slv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.52126366950182
- type: f1
value: 72.8496210148701
- type: precision
value: 70.92171498003819
- type: recall
value: 77.52126366950182
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cym-eng)
type: mteb/tatoeba-bitext-mining
config: cym-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 70.78260869565217
- type: f1
value: 65.32422360248447
- type: precision
value: 63.063067367415194
- type: recall
value: 70.78260869565217
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kaz-eng)
type: mteb/tatoeba-bitext-mining
config: kaz-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 78.43478260869566
- type: f1
value: 73.02608695652172
- type: precision
value: 70.63768115942028
- type: recall
value: 78.43478260869566
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (est-eng)
type: mteb/tatoeba-bitext-mining
config: est-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 60.9
- type: f1
value: 55.309753694581275
- type: precision
value: 53.130476190476195
- type: recall
value: 60.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (heb-eng)
type: mteb/tatoeba-bitext-mining
config: heb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 72.89999999999999
- type: f1
value: 67.92023809523809
- type: precision
value: 65.82595238095237
- type: recall
value: 72.89999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (gla-eng)
type: mteb/tatoeba-bitext-mining
config: gla-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 46.80337756332931
- type: f1
value: 39.42174900558496
- type: precision
value: 36.97101116280851
- type: recall
value: 46.80337756332931
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mar-eng)
type: mteb/tatoeba-bitext-mining
config: mar-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.8
- type: f1
value: 86.79
- type: precision
value: 85.375
- type: recall
value: 89.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lat-eng)
type: mteb/tatoeba-bitext-mining
config: lat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 47.199999999999996
- type: f1
value: 39.95484348984349
- type: precision
value: 37.561071428571424
- type: recall
value: 47.199999999999996
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bel-eng)
type: mteb/tatoeba-bitext-mining
config: bel-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.8
- type: f1
value: 84.68190476190475
- type: precision
value: 83.275
- type: recall
value: 87.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pms-eng)
type: mteb/tatoeba-bitext-mining
config: pms-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 48.76190476190476
- type: f1
value: 42.14965986394558
- type: precision
value: 39.96743626743626
- type: recall
value: 48.76190476190476
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (gle-eng)
type: mteb/tatoeba-bitext-mining
config: gle-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 66.10000000000001
- type: f1
value: 59.58580086580086
- type: precision
value: 57.150238095238095
- type: recall
value: 66.10000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pes-eng)
type: mteb/tatoeba-bitext-mining
config: pes-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.3
- type: f1
value: 84.0
- type: precision
value: 82.48666666666666
- type: recall
value: 87.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nob-eng)
type: mteb/tatoeba-bitext-mining
config: nob-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.4
- type: f1
value: 87.79523809523809
- type: precision
value: 86.6
- type: recall
value: 90.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bul-eng)
type: mteb/tatoeba-bitext-mining
config: bul-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.0
- type: f1
value: 83.81
- type: precision
value: 82.36666666666666
- type: recall
value: 87.0
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cbk-eng)
type: mteb/tatoeba-bitext-mining
config: cbk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 63.9
- type: f1
value: 57.76533189033189
- type: precision
value: 55.50595238095239
- type: recall
value: 63.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hun-eng)
type: mteb/tatoeba-bitext-mining
config: hun-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 76.1
- type: f1
value: 71.83690476190478
- type: precision
value: 70.04928571428573
- type: recall
value: 76.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (uig-eng)
type: mteb/tatoeba-bitext-mining
config: uig-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 66.3
- type: f1
value: 59.32626984126984
- type: precision
value: 56.62535714285713
- type: recall
value: 66.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (rus-eng)
type: mteb/tatoeba-bitext-mining
config: rus-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.60000000000001
- type: f1
value: 87.96333333333334
- type: precision
value: 86.73333333333333
- type: recall
value: 90.60000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (spa-eng)
type: mteb/tatoeba-bitext-mining
config: spa-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.10000000000001
- type: f1
value: 91.10000000000001
- type: precision
value: 90.16666666666666
- type: recall
value: 93.10000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hye-eng)
type: mteb/tatoeba-bitext-mining
config: hye-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85.71428571428571
- type: f1
value: 82.29142600436403
- type: precision
value: 80.8076626877166
- type: recall
value: 85.71428571428571
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tel-eng)
type: mteb/tatoeba-bitext-mining
config: tel-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.88888888888889
- type: f1
value: 85.7834757834758
- type: precision
value: 84.43732193732193
- type: recall
value: 88.88888888888889
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (afr-eng)
type: mteb/tatoeba-bitext-mining
config: afr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.5
- type: f1
value: 85.67190476190476
- type: precision
value: 84.43333333333332
- type: recall
value: 88.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mon-eng)
type: mteb/tatoeba-bitext-mining
config: mon-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 82.72727272727273
- type: f1
value: 78.21969696969695
- type: precision
value: 76.18181818181819
- type: recall
value: 82.72727272727273
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (arz-eng)
type: mteb/tatoeba-bitext-mining
config: arz-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 61.0062893081761
- type: f1
value: 55.13976240391334
- type: precision
value: 52.92112499659669
- type: recall
value: 61.0062893081761
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hrv-eng)
type: mteb/tatoeba-bitext-mining
config: hrv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.5
- type: f1
value: 86.86666666666666
- type: precision
value: 85.69166666666668
- type: recall
value: 89.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nov-eng)
type: mteb/tatoeba-bitext-mining
config: nov-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 73.54085603112841
- type: f1
value: 68.56031128404669
- type: precision
value: 66.53047989623866
- type: recall
value: 73.54085603112841
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (gsw-eng)
type: mteb/tatoeba-bitext-mining
config: gsw-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 43.58974358974359
- type: f1
value: 36.45299145299145
- type: precision
value: 33.81155881155882
- type: recall
value: 43.58974358974359
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nds-eng)
type: mteb/tatoeba-bitext-mining
config: nds-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 59.599999999999994
- type: f1
value: 53.264689754689755
- type: precision
value: 50.869166666666665
- type: recall
value: 59.599999999999994
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ukr-eng)
type: mteb/tatoeba-bitext-mining
config: ukr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85.2
- type: f1
value: 81.61666666666665
- type: precision
value: 80.02833333333335
- type: recall
value: 85.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (uzb-eng)
type: mteb/tatoeba-bitext-mining
config: uzb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 63.78504672897196
- type: f1
value: 58.00029669188548
- type: precision
value: 55.815809968847354
- type: recall
value: 63.78504672897196
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lit-eng)
type: mteb/tatoeba-bitext-mining
config: lit-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 66.5
- type: f1
value: 61.518333333333345
- type: precision
value: 59.622363699102834
- type: recall
value: 66.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ina-eng)
type: mteb/tatoeba-bitext-mining
config: ina-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.6
- type: f1
value: 85.60222222222221
- type: precision
value: 84.27916666666665
- type: recall
value: 88.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lfn-eng)
type: mteb/tatoeba-bitext-mining
config: lfn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 58.699999999999996
- type: f1
value: 52.732375957375965
- type: precision
value: 50.63214035964035
- type: recall
value: 58.699999999999996
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (zsm-eng)
type: mteb/tatoeba-bitext-mining
config: zsm-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.10000000000001
- type: f1
value: 89.99666666666667
- type: precision
value: 89.03333333333333
- type: recall
value: 92.10000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ita-eng)
type: mteb/tatoeba-bitext-mining
config: ita-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.10000000000001
- type: f1
value: 87.55666666666667
- type: precision
value: 86.36166666666668
- type: recall
value: 90.10000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cmn-eng)
type: mteb/tatoeba-bitext-mining
config: cmn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.4
- type: f1
value: 88.89000000000001
- type: precision
value: 87.71166666666666
- type: recall
value: 91.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lvs-eng)
type: mteb/tatoeba-bitext-mining
config: lvs-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 65.7
- type: f1
value: 60.67427750410509
- type: precision
value: 58.71785714285714
- type: recall
value: 65.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (glg-eng)
type: mteb/tatoeba-bitext-mining
config: glg-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85.39999999999999
- type: f1
value: 81.93190476190475
- type: precision
value: 80.37833333333333
- type: recall
value: 85.39999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ceb-eng)
type: mteb/tatoeba-bitext-mining
config: ceb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 47.833333333333336
- type: f1
value: 42.006625781625786
- type: precision
value: 40.077380952380956
- type: recall
value: 47.833333333333336
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bre-eng)
type: mteb/tatoeba-bitext-mining
config: bre-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 10.4
- type: f1
value: 8.24465007215007
- type: precision
value: 7.664597069597071
- type: recall
value: 10.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ben-eng)
type: mteb/tatoeba-bitext-mining
config: ben-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 82.6
- type: f1
value: 77.76333333333334
- type: precision
value: 75.57833333333332
- type: recall
value: 82.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (swg-eng)
type: mteb/tatoeba-bitext-mining
config: swg-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 52.67857142857143
- type: f1
value: 44.302721088435376
- type: precision
value: 41.49801587301587
- type: recall
value: 52.67857142857143
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (arq-eng)
type: mteb/tatoeba-bitext-mining
config: arq-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 28.3205268935236
- type: f1
value: 22.426666605171157
- type: precision
value: 20.685900116470915
- type: recall
value: 28.3205268935236
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kab-eng)
type: mteb/tatoeba-bitext-mining
config: kab-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 22.7
- type: f1
value: 17.833970473970474
- type: precision
value: 16.407335164835164
- type: recall
value: 22.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fra-eng)
type: mteb/tatoeba-bitext-mining
config: fra-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.2
- type: f1
value: 89.92999999999999
- type: precision
value: 88.87
- type: recall
value: 92.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (por-eng)
type: mteb/tatoeba-bitext-mining
config: por-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.4
- type: f1
value: 89.25
- type: precision
value: 88.21666666666667
- type: recall
value: 91.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tat-eng)
type: mteb/tatoeba-bitext-mining
config: tat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 69.19999999999999
- type: f1
value: 63.38269841269841
- type: precision
value: 61.14773809523809
- type: recall
value: 69.19999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (oci-eng)
type: mteb/tatoeba-bitext-mining
config: oci-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 48.8
- type: f1
value: 42.839915639915645
- type: precision
value: 40.770287114845935
- type: recall
value: 48.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pol-eng)
type: mteb/tatoeba-bitext-mining
config: pol-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.8
- type: f1
value: 85.90666666666668
- type: precision
value: 84.54166666666666
- type: recall
value: 88.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (war-eng)
type: mteb/tatoeba-bitext-mining
config: war-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 46.6
- type: f1
value: 40.85892920804686
- type: precision
value: 38.838223114604695
- type: recall
value: 46.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (aze-eng)
type: mteb/tatoeba-bitext-mining
config: aze-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.0
- type: f1
value: 80.14190476190475
- type: precision
value: 78.45333333333333
- type: recall
value: 84.0
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (vie-eng)
type: mteb/tatoeba-bitext-mining
config: vie-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.5
- type: f1
value: 87.78333333333333
- type: precision
value: 86.5
- type: recall
value: 90.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nno-eng)
type: mteb/tatoeba-bitext-mining
config: nno-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 74.5
- type: f1
value: 69.48397546897547
- type: precision
value: 67.51869047619049
- type: recall
value: 74.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cha-eng)
type: mteb/tatoeba-bitext-mining
config: cha-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 32.846715328467155
- type: f1
value: 27.828177499710343
- type: precision
value: 26.63451511991658
- type: recall
value: 32.846715328467155
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mhr-eng)
type: mteb/tatoeba-bitext-mining
config: mhr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 8.0
- type: f1
value: 6.07664116764988
- type: precision
value: 5.544177607179943
- type: recall
value: 8.0
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (dan-eng)
type: mteb/tatoeba-bitext-mining
config: dan-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.6
- type: f1
value: 84.38555555555554
- type: precision
value: 82.91583333333334
- type: recall
value: 87.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ell-eng)
type: mteb/tatoeba-bitext-mining
config: ell-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.5
- type: f1
value: 84.08333333333331
- type: precision
value: 82.47333333333333
- type: recall
value: 87.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (amh-eng)
type: mteb/tatoeba-bitext-mining
config: amh-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 80.95238095238095
- type: f1
value: 76.13095238095238
- type: precision
value: 74.05753968253967
- type: recall
value: 80.95238095238095
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pam-eng)
type: mteb/tatoeba-bitext-mining
config: pam-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 8.799999999999999
- type: f1
value: 6.971422975172975
- type: precision
value: 6.557814916172301
- type: recall
value: 8.799999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hsb-eng)
type: mteb/tatoeba-bitext-mining
config: hsb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 44.099378881987576
- type: f1
value: 37.01649742022413
- type: precision
value: 34.69420618488942
- type: recall
value: 44.099378881987576
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (srp-eng)
type: mteb/tatoeba-bitext-mining
config: srp-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.3
- type: f1
value: 80.32666666666667
- type: precision
value: 78.60666666666665
- type: recall
value: 84.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (epo-eng)
type: mteb/tatoeba-bitext-mining
config: epo-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.5
- type: f1
value: 90.49666666666666
- type: precision
value: 89.56666666666668
- type: recall
value: 92.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kzj-eng)
type: mteb/tatoeba-bitext-mining
config: kzj-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 10.0
- type: f1
value: 8.268423529875141
- type: precision
value: 7.878118605532398
- type: recall
value: 10.0
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (awa-eng)
type: mteb/tatoeba-bitext-mining
config: awa-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 79.22077922077922
- type: f1
value: 74.27128427128426
- type: precision
value: 72.28715728715729
- type: recall
value: 79.22077922077922
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fao-eng)
type: mteb/tatoeba-bitext-mining
config: fao-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 65.64885496183206
- type: f1
value: 58.87495456197747
- type: precision
value: 55.992366412213734
- type: recall
value: 65.64885496183206
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mal-eng)
type: mteb/tatoeba-bitext-mining
config: mal-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.06986899563319
- type: f1
value: 94.78408539543909
- type: precision
value: 94.15332362930616
- type: recall
value: 96.06986899563319
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ile-eng)
type: mteb/tatoeba-bitext-mining
config: ile-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.2
- type: f1
value: 71.72571428571428
- type: precision
value: 69.41000000000001
- type: recall
value: 77.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bos-eng)
type: mteb/tatoeba-bitext-mining
config: bos-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 86.4406779661017
- type: f1
value: 83.2391713747646
- type: precision
value: 81.74199623352166
- type: recall
value: 86.4406779661017
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cor-eng)
type: mteb/tatoeba-bitext-mining
config: cor-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 8.4
- type: f1
value: 6.017828743398003
- type: precision
value: 5.4829865484756795
- type: recall
value: 8.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cat-eng)
type: mteb/tatoeba-bitext-mining
config: cat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 83.5
- type: f1
value: 79.74833333333333
- type: precision
value: 78.04837662337664
- type: recall
value: 83.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (eus-eng)
type: mteb/tatoeba-bitext-mining
config: eus-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 60.4
- type: f1
value: 54.467301587301584
- type: precision
value: 52.23242424242424
- type: recall
value: 60.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (yue-eng)
type: mteb/tatoeba-bitext-mining
config: yue-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 74.9
- type: f1
value: 69.68699134199134
- type: precision
value: 67.59873015873016
- type: recall
value: 74.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (swe-eng)
type: mteb/tatoeba-bitext-mining
config: swe-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.0
- type: f1
value: 84.9652380952381
- type: precision
value: 83.66166666666666
- type: recall
value: 88.0
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (dtp-eng)
type: mteb/tatoeba-bitext-mining
config: dtp-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 9.1
- type: f1
value: 7.681244588744588
- type: precision
value: 7.370043290043291
- type: recall
value: 9.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kat-eng)
type: mteb/tatoeba-bitext-mining
config: kat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 80.9651474530831
- type: f1
value: 76.84220605132133
- type: precision
value: 75.19606398962966
- type: recall
value: 80.9651474530831
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (jpn-eng)
type: mteb/tatoeba-bitext-mining
config: jpn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 86.9
- type: f1
value: 83.705
- type: precision
value: 82.3120634920635
- type: recall
value: 86.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (csb-eng)
type: mteb/tatoeba-bitext-mining
config: csb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 29.64426877470356
- type: f1
value: 23.98763072676116
- type: precision
value: 22.506399397703746
- type: recall
value: 29.64426877470356
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (xho-eng)
type: mteb/tatoeba-bitext-mining
config: xho-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 70.4225352112676
- type: f1
value: 62.84037558685445
- type: precision
value: 59.56572769953053
- type: recall
value: 70.4225352112676
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (orv-eng)
type: mteb/tatoeba-bitext-mining
config: orv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 19.64071856287425
- type: f1
value: 15.125271011207756
- type: precision
value: 13.865019261197494
- type: recall
value: 19.64071856287425
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ind-eng)
type: mteb/tatoeba-bitext-mining
config: ind-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.2
- type: f1
value: 87.80666666666666
- type: precision
value: 86.70833333333331
- type: recall
value: 90.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tuk-eng)
type: mteb/tatoeba-bitext-mining
config: tuk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 23.15270935960591
- type: f1
value: 18.407224958949097
- type: precision
value: 16.982385430661292
- type: recall
value: 23.15270935960591
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (max-eng)
type: mteb/tatoeba-bitext-mining
config: max-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 55.98591549295775
- type: f1
value: 49.94718309859154
- type: precision
value: 47.77864154624717
- type: recall
value: 55.98591549295775
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (swh-eng)
type: mteb/tatoeba-bitext-mining
config: swh-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 73.07692307692307
- type: f1
value: 66.74358974358974
- type: precision
value: 64.06837606837607
- type: recall
value: 73.07692307692307
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hin-eng)
type: mteb/tatoeba-bitext-mining
config: hin-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.89999999999999
- type: f1
value: 93.25
- type: precision
value: 92.43333333333332
- type: recall
value: 94.89999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (dsb-eng)
type: mteb/tatoeba-bitext-mining
config: dsb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 37.78705636743215
- type: f1
value: 31.63899658680452
- type: precision
value: 29.72264397629742
- type: recall
value: 37.78705636743215
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ber-eng)
type: mteb/tatoeba-bitext-mining
config: ber-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 21.6
- type: f1
value: 16.91697302697303
- type: precision
value: 15.71225147075147
- type: recall
value: 21.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tam-eng)
type: mteb/tatoeba-bitext-mining
config: tam-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85.01628664495115
- type: f1
value: 81.38514037536838
- type: precision
value: 79.83170466883823
- type: recall
value: 85.01628664495115
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (slk-eng)
type: mteb/tatoeba-bitext-mining
config: slk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 83.39999999999999
- type: f1
value: 79.96380952380952
- type: precision
value: 78.48333333333333
- type: recall
value: 83.39999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tgl-eng)
type: mteb/tatoeba-bitext-mining
config: tgl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 83.2
- type: f1
value: 79.26190476190476
- type: precision
value: 77.58833333333334
- type: recall
value: 83.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ast-eng)
type: mteb/tatoeba-bitext-mining
config: ast-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 75.59055118110236
- type: f1
value: 71.66854143232096
- type: precision
value: 70.30183727034121
- type: recall
value: 75.59055118110236
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mkd-eng)
type: mteb/tatoeba-bitext-mining
config: mkd-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 65.5
- type: f1
value: 59.26095238095238
- type: precision
value: 56.81909090909092
- type: recall
value: 65.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (khm-eng)
type: mteb/tatoeba-bitext-mining
config: khm-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 55.26315789473685
- type: f1
value: 47.986523325858506
- type: precision
value: 45.33950006595436
- type: recall
value: 55.26315789473685
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ces-eng)
type: mteb/tatoeba-bitext-mining
config: ces-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 82.89999999999999
- type: f1
value: 78.835
- type: precision
value: 77.04761904761905
- type: recall
value: 82.89999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tzl-eng)
type: mteb/tatoeba-bitext-mining
config: tzl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 43.269230769230774
- type: f1
value: 36.20421245421245
- type: precision
value: 33.57371794871795
- type: recall
value: 43.269230769230774
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (urd-eng)
type: mteb/tatoeba-bitext-mining
config: urd-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.0
- type: f1
value: 84.70666666666666
- type: precision
value: 83.23166666666665
- type: recall
value: 88.0
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ara-eng)
type: mteb/tatoeba-bitext-mining
config: ara-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.4
- type: f1
value: 72.54666666666667
- type: precision
value: 70.54318181818181
- type: recall
value: 77.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kor-eng)
type: mteb/tatoeba-bitext-mining
config: kor-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 78.60000000000001
- type: f1
value: 74.1588888888889
- type: precision
value: 72.30250000000001
- type: recall
value: 78.60000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (yid-eng)
type: mteb/tatoeba-bitext-mining
config: yid-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 72.40566037735849
- type: f1
value: 66.82587328813744
- type: precision
value: 64.75039308176099
- type: recall
value: 72.40566037735849
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fin-eng)
type: mteb/tatoeba-bitext-mining
config: fin-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 73.8
- type: f1
value: 68.56357142857144
- type: precision
value: 66.3178822055138
- type: recall
value: 73.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tha-eng)
type: mteb/tatoeba-bitext-mining
config: tha-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.78832116788321
- type: f1
value: 89.3552311435523
- type: precision
value: 88.20559610705597
- type: recall
value: 91.78832116788321
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (wuu-eng)
type: mteb/tatoeba-bitext-mining
config: wuu-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 74.3
- type: f1
value: 69.05085581085581
- type: precision
value: 66.955
- type: recall
value: 74.3
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.896
- type: map_at_10
value: 8.993
- type: map_at_100
value: 14.133999999999999
- type: map_at_1000
value: 15.668000000000001
- type: map_at_3
value: 5.862
- type: map_at_5
value: 7.17
- type: mrr_at_1
value: 34.694
- type: mrr_at_10
value: 42.931000000000004
- type: mrr_at_100
value: 44.81
- type: mrr_at_1000
value: 44.81
- type: mrr_at_3
value: 38.435
- type: mrr_at_5
value: 41.701
- type: ndcg_at_1
value: 31.633
- type: ndcg_at_10
value: 21.163
- type: ndcg_at_100
value: 33.306000000000004
- type: ndcg_at_1000
value: 45.275999999999996
- type: ndcg_at_3
value: 25.685999999999996
- type: ndcg_at_5
value: 23.732
- type: precision_at_1
value: 34.694
- type: precision_at_10
value: 17.755000000000003
- type: precision_at_100
value: 6.938999999999999
- type: precision_at_1000
value: 1.48
- type: precision_at_3
value: 25.85
- type: precision_at_5
value: 23.265
- type: recall_at_1
value: 2.896
- type: recall_at_10
value: 13.333999999999998
- type: recall_at_100
value: 43.517
- type: recall_at_1000
value: 79.836
- type: recall_at_3
value: 6.306000000000001
- type: recall_at_5
value: 8.825
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 69.3874
- type: ap
value: 13.829909072469423
- type: f1
value: 53.54534203543492
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 62.62026032823995
- type: f1
value: 62.85251350485221
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 33.21527881409797
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 84.97943613280086
- type: cos_sim_ap
value: 70.75454316885921
- type: cos_sim_f1
value: 65.38274012676743
- type: cos_sim_precision
value: 60.761214318078835
- type: cos_sim_recall
value: 70.76517150395777
- type: dot_accuracy
value: 79.0546581629612
- type: dot_ap
value: 47.3197121792147
- type: dot_f1
value: 49.20106524633821
- type: dot_precision
value: 42.45499808502489
- type: dot_recall
value: 58.49604221635884
- type: euclidean_accuracy
value: 85.08076533349228
- type: euclidean_ap
value: 70.95016106374474
- type: euclidean_f1
value: 65.43987900176455
- type: euclidean_precision
value: 62.64478764478765
- type: euclidean_recall
value: 68.49604221635884
- type: manhattan_accuracy
value: 84.93771234428085
- type: manhattan_ap
value: 70.63668388755362
- type: manhattan_f1
value: 65.23895401262398
- type: manhattan_precision
value: 56.946084218811485
- type: manhattan_recall
value: 76.35883905013192
- type: max_accuracy
value: 85.08076533349228
- type: max_ap
value: 70.95016106374474
- type: max_f1
value: 65.43987900176455
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.69096130709822
- type: cos_sim_ap
value: 84.82526278228542
- type: cos_sim_f1
value: 77.65485060585536
- type: cos_sim_precision
value: 75.94582658619167
- type: cos_sim_recall
value: 79.44256236526024
- type: dot_accuracy
value: 80.97954748321496
- type: dot_ap
value: 64.81642914145866
- type: dot_f1
value: 60.631996987229975
- type: dot_precision
value: 54.5897293631712
- type: dot_recall
value: 68.17831844779796
- type: euclidean_accuracy
value: 88.6987231730508
- type: euclidean_ap
value: 84.80003825477253
- type: euclidean_f1
value: 77.67194179854496
- type: euclidean_precision
value: 75.7128235122094
- type: euclidean_recall
value: 79.73514012935017
- type: manhattan_accuracy
value: 88.62692591298949
- type: manhattan_ap
value: 84.80451408255276
- type: manhattan_f1
value: 77.69888949572183
- type: manhattan_precision
value: 73.70311528631622
- type: manhattan_recall
value: 82.15275639051433
- type: max_accuracy
value: 88.6987231730508
- type: max_ap
value: 84.82526278228542
- type: max_f1
value: 77.69888949572183
---
# multilingual-e5-small-mlx
This model was converted to MLX format from [`intfloat/multilingual-e5-small`]().
Refer to the [original model card](https://huggingface.co/intfloat/multilingual-e5-small) for more details on the model.
## Use with mlx
```bash
pip install mlx
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/llms/hf_llm
python generate.py --model mlx-community/multilingual-e5-small-mlx --prompt "My name is"
```