|
--- |
|
license: apache-2.0 |
|
library_name: mlx-image |
|
tags: |
|
- mlx |
|
- mlx-image |
|
- vision |
|
- image-classification |
|
datasets: |
|
- imagenet-1k |
|
--- |
|
# regnet_y_32gf |
|
|
|
A RegNetY-32GF image classification model. Pretrained in ImageNet by torchvision contributors (see ImageNet1K-V2 weight details https://github.com/pytorch/vision/issues/3995#new-recipe). |
|
|
|
Disclaimer: This is a porting of the torch model weights to Apple MLX Framework. |
|
|
|
## How to use |
|
```bash |
|
pip install mlx-image |
|
``` |
|
|
|
Here is how to use this model for image classification: |
|
|
|
```python |
|
from mlxim.model import create_model |
|
from mlxim.io import read_rgb |
|
from mlxim.transform import ImageNetTransform |
|
|
|
transform = ImageNetTransform(train=False, img_size=224) |
|
x = transform(read_rgb("cat.png")) |
|
x = mx.expand_dims(x, 0) |
|
|
|
model = create_model("regnet_y_32gf") |
|
model.eval() |
|
|
|
logits = model(x) |
|
``` |
|
|
|
You can also use the embeds from layer before head: |
|
```python |
|
from mlxim.model import create_model |
|
from mlxim.io import read_rgb |
|
from mlxim.transform import ImageNetTransform |
|
|
|
transform = ImageNetTransform(train=False, img_size=224) |
|
x = transform(read_rgb("cat.png")) |
|
x = mx.expand_dims(x, 0) |
|
|
|
# first option |
|
model = create_model("regnet_y_32gf", num_classes=0) |
|
model.eval() |
|
|
|
embeds = model(x) |
|
|
|
# second option |
|
model = create_model("regnet_y_32gf") |
|
model.eval() |
|
|
|
embeds = model.get_features(x) |
|
``` |
|
|
|
|