metadata
library_name: transformers
language:
- ur
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Urdu (Hazrat v1 250 samples)
results: []
Whisper Urdu (Hazrat v1 250 samples)
This model is a fine-tuned version of openai/whisper-small on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.9203
- Wer: 53.0197
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 25
- num_epochs: 5
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
1.3285 | 0.9375 | 15 | 1.1243 | 73.4611 |
1.0515 | 1.875 | 30 | 0.9972 | 57.4332 |
0.8574 | 2.8125 | 45 | 0.9302 | 61.2660 |
0.7007 | 3.75 | 60 | 0.9257 | 56.0395 |
0.6162 | 4.6875 | 75 | 0.9203 | 53.0197 |
Framework versions
- Transformers 4.47.0
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.21.0