distilbert-base-cased-finetuned-ner_0301_J_DATA

This model is a fine-tuned version of distilbert-base-cased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0356
  • Precision: 0.9588
  • Recall: 0.9664
  • F1: 0.9626
  • Accuracy: 0.9933

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2272 1.0 705 0.0711 0.8795 0.9249 0.9016 0.9777
0.0551 2.0 1410 0.0439 0.9222 0.9563 0.9389 0.9878
0.0253 3.0 2115 0.0397 0.9312 0.9563 0.9436 0.9898
0.0277 4.0 2820 0.0500 0.9492 0.9641 0.9566 0.9898
0.018 5.0 3525 0.0414 0.9524 0.9652 0.9588 0.9902
0.0154 6.0 4230 0.0383 0.9397 0.9608 0.9501 0.9892
0.0133 7.0 4935 0.0454 0.9408 0.9619 0.9512 0.9888
0.0073 8.0 5640 0.0343 0.9496 0.9709 0.9601 0.9917
0.0071 9.0 6345 0.0295 0.9524 0.9652 0.9588 0.9923
0.0053 10.0 7050 0.0307 0.9449 0.9619 0.9533 0.9929
0.0048 11.0 7755 0.0221 0.9304 0.9585 0.9442 0.9935
0.0022 12.0 8460 0.0338 0.9450 0.9630 0.9539 0.9923
0.0024 13.0 9165 0.0263 0.9578 0.9675 0.9626 0.9938
0.0017 14.0 9870 0.0345 0.9547 0.9697 0.9622 0.9935
0.0016 15.0 10575 0.0356 0.9588 0.9664 0.9626 0.9933

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.8.0
  • Tokenizers 0.12.1
Downloads last month
1
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.