distilbert-base-uncased-finetuned-ner_0220_J_ORIDATA

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4949
  • Precision: 0.8987
  • Recall: 0.9551
  • F1: 0.9260
  • Accuracy: 0.9437

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 111 0.2996 0.7246 0.8407 0.7783 0.9295
No log 2.0 222 0.2545 0.8067 0.8983 0.8500 0.9343
No log 3.0 333 0.2398 0.8649 0.9280 0.8953 0.9445
No log 4.0 444 0.2326 0.8651 0.9297 0.8962 0.9459
0.329 5.0 555 0.2200 0.8836 0.9263 0.9044 0.9459
0.329 6.0 666 0.2382 0.8365 0.9280 0.8799 0.9315
0.329 7.0 777 0.2349 0.8775 0.9347 0.9052 0.9395
0.329 8.0 888 0.2604 0.8832 0.9424 0.9118 0.9415
0.329 9.0 999 0.2705 0.8929 0.9331 0.9126 0.9483
0.124 10.0 1110 0.2986 0.8731 0.9390 0.9049 0.9410
0.124 11.0 1221 0.2960 0.8805 0.9432 0.9108 0.9441
0.124 12.0 1332 0.2798 0.8778 0.9373 0.9066 0.9401
0.124 13.0 1443 0.3364 0.8851 0.9534 0.9180 0.9422
0.0735 14.0 1554 0.3546 0.8943 0.9534 0.9229 0.9425
0.0735 15.0 1665 0.3449 0.8917 0.9492 0.9195 0.9443
0.0735 16.0 1776 0.3789 0.8817 0.9407 0.9102 0.9381
0.0735 17.0 1887 0.3727 0.8803 0.9407 0.9095 0.9443
0.0735 18.0 1998 0.3633 0.8841 0.9373 0.9099 0.9387
0.0453 19.0 2109 0.4279 0.8816 0.9398 0.9098 0.9328
0.0453 20.0 2220 0.4055 0.8939 0.95 0.9211 0.9431
0.0453 21.0 2331 0.4138 0.8924 0.9492 0.9199 0.9441
0.0453 22.0 2442 0.4275 0.8948 0.9441 0.9188 0.9422
0.0283 23.0 2553 0.4319 0.8955 0.9508 0.9223 0.9418
0.0283 24.0 2664 0.4179 0.8878 0.9525 0.9191 0.9464
0.0283 25.0 2775 0.4341 0.8937 0.9407 0.9166 0.9420
0.0283 26.0 2886 0.4420 0.9063 0.9508 0.9280 0.9439
0.0283 27.0 2997 0.4370 0.8986 0.9466 0.9220 0.9432
0.0188 28.0 3108 0.4557 0.8953 0.9492 0.9214 0.9430
0.0188 29.0 3219 0.4458 0.8934 0.9449 0.9185 0.9437
0.0188 30.0 3330 0.4461 0.8973 0.9475 0.9217 0.9425
0.0188 31.0 3441 0.4638 0.9014 0.9525 0.9262 0.9426
0.0132 32.0 3552 0.4732 0.9029 0.9534 0.9275 0.9437
0.0132 33.0 3663 0.4645 0.9062 0.9576 0.9312 0.9453
0.0132 34.0 3774 0.4542 0.8981 0.9483 0.9225 0.9447
0.0132 35.0 3885 0.4702 0.8974 0.9492 0.9226 0.9431
0.0132 36.0 3996 0.4824 0.9081 0.9542 0.9306 0.9428
0.0101 37.0 4107 0.4757 0.8978 0.9534 0.9248 0.9442
0.0101 38.0 4218 0.4750 0.8971 0.9534 0.9244 0.9453
0.0101 39.0 4329 0.4843 0.9008 0.9542 0.9267 0.9446
0.0101 40.0 4440 0.4840 0.9019 0.9585 0.9293 0.9464
0.0077 41.0 4551 0.4852 0.8939 0.9492 0.9207 0.9436
0.0077 42.0 4662 0.4864 0.9051 0.9542 0.9290 0.9447
0.0077 43.0 4773 0.4801 0.9010 0.9559 0.9276 0.9431
0.0077 44.0 4884 0.4887 0.9016 0.9551 0.9276 0.9435
0.0077 45.0 4995 0.4973 0.8972 0.9542 0.9248 0.9430
0.0065 46.0 5106 0.4942 0.9 0.9534 0.9259 0.9436
0.0065 47.0 5217 0.4933 0.9007 0.9534 0.9263 0.9436
0.0065 48.0 5328 0.4979 0.8987 0.9551 0.9260 0.9434
0.0065 49.0 5439 0.4966 0.9009 0.9551 0.9272 0.9434
0.0059 50.0 5550 0.4949 0.8987 0.9551 0.9260 0.9437

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.13.0+cu117
  • Datasets 2.8.0
  • Tokenizers 0.12.1
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.