|
from typing import Dict, Any |
|
from transformers import AutoProcessor, Qwen2VLForConditionalGeneration |
|
import torch |
|
from PIL import Image |
|
import requests |
|
from io import BytesIO |
|
import json |
|
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
|
|
class EndpointHandler: |
|
def __init__(self, path: str = ""): |
|
""" |
|
Initializes the handler for the Qwen2-VL model. |
|
|
|
Args: |
|
path (str): Path to the model weights and processor. Defaults to the current directory. |
|
""" |
|
|
|
self.processor = AutoProcessor.from_pretrained(path) |
|
self.model = Qwen2VLForConditionalGeneration.from_pretrained( |
|
path, |
|
torch_dtype="auto", |
|
device_map="auto" |
|
) |
|
|
|
self.model.to(device) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: |
|
""" |
|
Processes the input data and returns the model's prediction. |
|
|
|
Args: |
|
data (Dict[str, Any]): Input data containing `image_url` and `text`. |
|
|
|
Returns: |
|
Dict[str, Any]: The prediction or an error message. |
|
""" |
|
image_url = data.get("image_url", "") |
|
text = data.get("text", "") |
|
|
|
|
|
try: |
|
response = requests.get(image_url) |
|
response.raise_for_status() |
|
image = Image.open(BytesIO(response.content)) |
|
except Exception as e: |
|
return {"error": f"Failed to fetch or process image: {str(e)}"} |
|
|
|
|
|
text_prompt = self.processor.apply_chat_template( |
|
[{"role": "user", "content": [{"type": "text", "text": text}]}], |
|
add_generation_prompt=True |
|
) |
|
|
|
|
|
inputs = self.processor( |
|
text=[text_prompt], |
|
images=[image], |
|
padding=True, |
|
return_tensors="pt" |
|
) |
|
|
|
|
|
inputs = {key: value.to(device) for key, value in inputs.items()} |
|
|
|
|
|
output_ids = self.model.generate(**inputs, max_new_tokens=128) |
|
|
|
|
|
output_text = self.processor.batch_decode( |
|
output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True |
|
)[0] |
|
|
|
|
|
cleaned_data = output_text.replace("```json\n", "").replace("```", "").strip() |
|
try: |
|
prediction = json.loads(cleaned_data) |
|
except json.JSONDecodeError as e: |
|
return {"error": f"Failed to parse JSON output: {str(e)}", "raw_output": cleaned_data} |
|
|
|
return {"prediction": prediction} |
|
|