|
--- |
|
license: other |
|
base_model: nvidia/segformer-b0-finetuned-ade-512-512 |
|
tags: |
|
- vision |
|
- image-segmentation |
|
- generated_from_trainer |
|
metrics: |
|
- precision |
|
model-index: |
|
- name: segformer-b0-finetuned-segments-pv_v1_x3_normalized_p100_4batch |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mouadn773/huggingface/runs/hwghoj9l) |
|
# segformer-b0-finetuned-segments-pv_v1_x3_normalized_p100_4batch |
|
|
|
This model is a fine-tuned version of [nvidia/segformer-b0-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0056 |
|
- Mean Iou: 0.8288 |
|
- Precision: 0.8928 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0004 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.001 |
|
- num_epochs: 40 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision | |
|
|:-------------:|:------:|:----:|:---------------:|:--------:|:---------:| |
|
| 0.0086 | 0.9993 | 687 | 0.0068 | 0.8080 | 0.8515 | |
|
| 0.0061 | 2.0 | 1375 | 0.0056 | 0.8257 | 0.8862 | |
|
| 0.0058 | 2.9993 | 2062 | 0.0056 | 0.8284 | 0.9154 | |
|
| 0.0063 | 4.0 | 2750 | 0.0055 | 0.8212 | 0.9261 | |
|
| 0.0051 | 4.9993 | 3437 | 0.0081 | 0.7851 | 0.9189 | |
|
| 0.0042 | 6.0 | 4125 | 0.0062 | 0.8322 | 0.9034 | |
|
| 0.004 | 6.9993 | 4812 | 0.0067 | 0.8262 | 0.8807 | |
|
| 0.0049 | 8.0 | 5500 | 0.0061 | 0.8271 | 0.9135 | |
|
| 0.0043 | 8.9993 | 6187 | 0.0056 | 0.8288 | 0.8928 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|