Transformers
GGUF
English
Japanese
Inference Endpoints
conversational
mradermacher's picture
auto-patch README.md
911e5a5 verified
metadata
base_model: tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2
datasets:
  - lmsys/lmsys-chat-1m
  - tokyotech-llm/lmsys-chat-1m-synth
  - argilla/magpie-ultra-v0.1
language:
  - en
  - ja
library_name: transformers
license:
  - llama3.1
  - gemma
model_type: llama
quantized_by: mradermacher

About

static quants of https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2

weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-i1-GGUF

Usage

If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.

Provided Quants

(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)

Link Type Size/GB Notes
GGUF Q2_K 3.3
GGUF Q3_K_S 3.8
GGUF Q3_K_M 4.1 lower quality
GGUF Q3_K_L 4.4
GGUF IQ4_XS 4.6
GGUF Q4_0_4_4 4.8 fast on arm, low quality
GGUF Q4_K_S 4.8 fast, recommended
GGUF Q4_K_M 5.0 fast, recommended
GGUF Q5_K_S 5.7
GGUF Q5_K_M 5.8
GGUF Q6_K 6.7 very good quality
GGUF Q8_0 8.6 fast, best quality
GGUF f16 16.2 16 bpw, overkill

Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):

image.png

And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9

FAQ / Model Request

See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.

Thanks

I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.