base_model: haoranxu/X-ALMA-13B-Pretrain
datasets:
- oscar-corpus/OSCAR-2301
- allenai/nllb
- Helsinki-NLP/opus-100
language:
- en
- da
- nl
- de
- is
- 'no'
- sc
- af
- ca
- ro
- gl
- it
- pt
- es
- bg
- mk
- sr
- uk
- ru
- id
- ms
- th
- vi
- mg
- fr
- hu
- el
- cs
- pl
- lt
- lv
- ka
- zh
- ja
- ko
- fi
- et
- gu
- hi
- mr
- ne
- ur
- az
- kk
- ky
- tr
- uz
- ar
- he
- fa
library_name: transformers
license: mit
quantized_by: mradermacher
About
static quants of https://huggingface.co/haoranxu/X-ALMA-13B-Pretrain
weighted/imatrix quants are available at https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF
Usage
If you are unsure how to use GGUF files, refer to one of TheBloke's READMEs for more details, including on how to concatenate multi-part files.
Provided Quants
(sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants)
Link | Type | Size/GB | Notes |
---|---|---|---|
GGUF | Q2_K | 5.0 | |
GGUF | Q3_K_S | 5.8 | |
GGUF | Q3_K_M | 6.4 | lower quality |
GGUF | Q3_K_L | 7.0 | |
GGUF | IQ4_XS | 7.1 | |
GGUF | Q4_K_S | 7.5 | fast, recommended |
GGUF | Q4_K_M | 8.0 | fast, recommended |
GGUF | Q5_K_S | 9.1 | |
GGUF | Q5_K_M | 9.3 | |
GGUF | Q6_K | 10.8 | very good quality |
GGUF | Q8_0 | 13.9 | fast, best quality |
Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better):
And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9
FAQ / Model Request
See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized.
Thanks
I thank my company, nethype GmbH, for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.