Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: echarlaix/tiny-random-mistral
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 82efb243c4acc5d5_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/82efb243c4acc5d5_train_data.json
  type:
    field_instruction: document_extracted
    field_output: answer
    format: '{instruction}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/171e70a9-ac4c-43a1-b27d-2d7fb42dc386
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/82efb243c4acc5d5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
special_tokens:
  pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: f291d08a-7bab-40e2-a056-41d22f449784
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f291d08a-7bab-40e2-a056-41d22f449784
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

171e70a9-ac4c-43a1-b27d-2d7fb42dc386

This model is a fine-tuned version of echarlaix/tiny-random-mistral on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 10.2150

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1367
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0018 1 10.3778
No log 0.0731 40 10.3776
No log 0.1463 80 10.3770
20.7539 0.2194 120 10.3759
20.7539 0.2925 160 10.3737
20.7481 0.3656 200 10.3695
20.7481 0.4388 240 10.3590
20.7481 0.5119 280 10.3314
20.7006 0.5850 320 10.3121
20.7006 0.6581 360 10.3067
20.6188 0.7313 400 10.3020
20.6188 0.8044 440 10.2942
20.6188 0.8775 480 10.2896
20.5903 0.9506 520 10.2872
20.5903 1.0238 560 10.2845
20.573 1.0969 600 10.2791
20.573 1.1700 640 10.2740
20.573 1.2431 680 10.2694
20.5561 1.3163 720 10.2649
20.5561 1.3894 760 10.2608
20.5316 1.4625 800 10.2570
20.5316 1.5356 840 10.2524
20.5316 1.6088 880 10.2474
20.5134 1.6819 920 10.2440
20.5134 1.7550 960 10.2411
20.4978 1.8282 1000 10.2388
20.4978 1.9013 1040 10.2363
20.4978 1.9744 1080 10.2341
20.4883 2.0475 1120 10.2326
20.4883 2.1207 1160 10.2310
20.4799 2.1938 1200 10.2297
20.4799 2.2669 1240 10.2282
20.4799 2.3400 1280 10.2270
20.4725 2.4132 1320 10.2260
20.4725 2.4863 1360 10.2251
20.4671 2.5594 1400 10.2242
20.4671 2.6325 1440 10.2234
20.4671 2.7057 1480 10.2223
20.4601 2.7788 1520 10.2210
20.4601 2.8519 1560 10.2200
20.4566 2.9250 1600 10.2196
20.4566 2.9982 1640 10.2191
20.4566 3.0713 1680 10.2184
20.4548 3.1444 1720 10.2179
20.4548 3.2176 1760 10.2177
20.4496 3.2907 1800 10.2174
20.4496 3.3638 1840 10.2171
20.4496 3.4369 1880 10.2168
20.4522 3.5101 1920 10.2165
20.4522 3.5832 1960 10.2164
20.445 3.6563 2000 10.2161
20.445 3.7294 2040 10.2160
20.445 3.8026 2080 10.2159
20.4546 3.8757 2120 10.2157
20.4546 3.9488 2160 10.2154
20.4492 4.0219 2200 10.2153
20.4492 4.0951 2240 10.2153
20.4492 4.1682 2280 10.2150
20.4499 4.2413 2320 10.2150
20.4499 4.3144 2360 10.2150
20.4462 4.3876 2400 10.2150

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
0
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/171e70a9-ac4c-43a1-b27d-2d7fb42dc386

Adapter
(220)
this model