See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: true
base_model: echarlaix/tiny-random-mistral
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 82efb243c4acc5d5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/82efb243c4acc5d5_train_data.json
type:
field_instruction: document_extracted
field_output: answer
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/171e70a9-ac4c-43a1-b27d-2d7fb42dc386
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/82efb243c4acc5d5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: </s>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: f291d08a-7bab-40e2-a056-41d22f449784
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f291d08a-7bab-40e2-a056-41d22f449784
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null
171e70a9-ac4c-43a1-b27d-2d7fb42dc386
This model is a fine-tuned version of echarlaix/tiny-random-mistral on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.2150
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0003
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 1367
- num_epochs: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0018 | 1 | 10.3778 |
No log | 0.0731 | 40 | 10.3776 |
No log | 0.1463 | 80 | 10.3770 |
20.7539 | 0.2194 | 120 | 10.3759 |
20.7539 | 0.2925 | 160 | 10.3737 |
20.7481 | 0.3656 | 200 | 10.3695 |
20.7481 | 0.4388 | 240 | 10.3590 |
20.7481 | 0.5119 | 280 | 10.3314 |
20.7006 | 0.5850 | 320 | 10.3121 |
20.7006 | 0.6581 | 360 | 10.3067 |
20.6188 | 0.7313 | 400 | 10.3020 |
20.6188 | 0.8044 | 440 | 10.2942 |
20.6188 | 0.8775 | 480 | 10.2896 |
20.5903 | 0.9506 | 520 | 10.2872 |
20.5903 | 1.0238 | 560 | 10.2845 |
20.573 | 1.0969 | 600 | 10.2791 |
20.573 | 1.1700 | 640 | 10.2740 |
20.573 | 1.2431 | 680 | 10.2694 |
20.5561 | 1.3163 | 720 | 10.2649 |
20.5561 | 1.3894 | 760 | 10.2608 |
20.5316 | 1.4625 | 800 | 10.2570 |
20.5316 | 1.5356 | 840 | 10.2524 |
20.5316 | 1.6088 | 880 | 10.2474 |
20.5134 | 1.6819 | 920 | 10.2440 |
20.5134 | 1.7550 | 960 | 10.2411 |
20.4978 | 1.8282 | 1000 | 10.2388 |
20.4978 | 1.9013 | 1040 | 10.2363 |
20.4978 | 1.9744 | 1080 | 10.2341 |
20.4883 | 2.0475 | 1120 | 10.2326 |
20.4883 | 2.1207 | 1160 | 10.2310 |
20.4799 | 2.1938 | 1200 | 10.2297 |
20.4799 | 2.2669 | 1240 | 10.2282 |
20.4799 | 2.3400 | 1280 | 10.2270 |
20.4725 | 2.4132 | 1320 | 10.2260 |
20.4725 | 2.4863 | 1360 | 10.2251 |
20.4671 | 2.5594 | 1400 | 10.2242 |
20.4671 | 2.6325 | 1440 | 10.2234 |
20.4671 | 2.7057 | 1480 | 10.2223 |
20.4601 | 2.7788 | 1520 | 10.2210 |
20.4601 | 2.8519 | 1560 | 10.2200 |
20.4566 | 2.9250 | 1600 | 10.2196 |
20.4566 | 2.9982 | 1640 | 10.2191 |
20.4566 | 3.0713 | 1680 | 10.2184 |
20.4548 | 3.1444 | 1720 | 10.2179 |
20.4548 | 3.2176 | 1760 | 10.2177 |
20.4496 | 3.2907 | 1800 | 10.2174 |
20.4496 | 3.3638 | 1840 | 10.2171 |
20.4496 | 3.4369 | 1880 | 10.2168 |
20.4522 | 3.5101 | 1920 | 10.2165 |
20.4522 | 3.5832 | 1960 | 10.2164 |
20.445 | 3.6563 | 2000 | 10.2161 |
20.445 | 3.7294 | 2040 | 10.2160 |
20.445 | 3.8026 | 2080 | 10.2159 |
20.4546 | 3.8757 | 2120 | 10.2157 |
20.4546 | 3.9488 | 2160 | 10.2154 |
20.4492 | 4.0219 | 2200 | 10.2153 |
20.4492 | 4.0951 | 2240 | 10.2153 |
20.4492 | 4.1682 | 2280 | 10.2150 |
20.4499 | 4.2413 | 2320 | 10.2150 |
20.4499 | 4.3144 | 2360 | 10.2150 |
20.4462 | 4.3876 | 2400 | 10.2150 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.3.1+cu121
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/171e70a9-ac4c-43a1-b27d-2d7fb42dc386
Base model
echarlaix/tiny-random-mistral