See axolotl config
axolotl version: 0.4.1
adapter: lora
auto_find_batch_size: false
base_model: bigcode/starcoder2-3b
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
- 693fb74cca31a376_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/693fb74cca31a376_train_data.json
type:
field_input: abstract
field_instruction: prompt
field_output: y_true
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
eval_max_new_tokens: 128
eval_steps: 14
eval_strategy: null
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 8
gradient_checkpointing: true
group_by_length: false
hub_model_id: mrferr3t/6c3b0c75-5225-48e1-9542-ff6e2c9e5e22
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0004
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 14
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_steps:
micro_batch_size: 16
mlflow_experiment_name: /tmp/693fb74cca31a376_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 100
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: /workspace/hub_repo/last-checkpoint
s2_attention: null
sample_packing: false
save_steps: 14
saves_per_epoch: 0
sequence_len: 512
special_tokens:
pad_token: <|endoftext|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode:
wandb_name: f5f34ed3-c062-4e3e-8192-6302a80934c2
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f5f34ed3-c062-4e3e-8192-6302a80934c2
warmup_steps: 100
weight_decay: 0.0
xformers_attention: null
6c3b0c75-5225-48e1-9542-ff6e2c9e5e22
This model is a fine-tuned version of bigcode/starcoder2-3b on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1165
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- num_epochs: 100
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
No log | 0.0086 | 1 | 0.2813 |
20.9456 | 0.1294 | 15 | 0.2647 |
10.9112 | 0.2589 | 30 | 0.1761 |
4.7789 | 0.3883 | 45 | 0.1488 |
2.9387 | 0.5178 | 60 | 0.1449 |
1.916 | 0.6472 | 75 | 0.1359 |
2.0292 | 0.7767 | 90 | 0.1308 |
1.5231 | 0.9061 | 105 | 0.1256 |
1.6669 | 1.0399 | 120 | 0.1252 |
1.1464 | 1.1694 | 135 | 0.1226 |
1.0988 | 1.2988 | 150 | 0.1204 |
0.9338 | 1.4283 | 165 | 0.1221 |
1.2596 | 1.5577 | 180 | 0.1170 |
1.1981 | 1.6872 | 195 | 0.1156 |
1.1855 | 1.8166 | 210 | 0.1156 |
1.1852 | 1.9493 | 225 | 0.1137 |
1.1871 | 2.0787 | 240 | 0.1168 |
0.9239 | 2.2082 | 255 | 0.1160 |
0.9451 | 2.3452 | 270 | 0.1165 |
1.0584 | 2.4746 | 285 | 0.1210 |
1.0776 | 2.6041 | 300 | 0.1165 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 8
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
HF Inference API was unable to determine this model’s pipeline type.
Model tree for mrferr3t/6c3b0c75-5225-48e1-9542-ff6e2c9e5e22
Base model
bigcode/starcoder2-3b