Built with Axolotl

See axolotl config

axolotl version: 0.4.1

adapter: lora
auto_find_batch_size: true
base_model: Qwen/Qwen2.5-1.5B
bf16: auto
chat_template: llama3
dataloader_num_workers: 12
dataset_prepared_path: null
datasets:
- data_files:
  - 30467321b0218499_train_data.json
  ds_type: json
  format: custom
  path: /workspace/input_data/30467321b0218499_train_data.json
  type:
    field_input: Japanese
    field_instruction: ENName
    field_output: English
    format: '{instruction} {input}'
    no_input_format: '{instruction}'
    system_format: '{system}'
    system_prompt: ''
debug: null
deepspeed: null
early_stopping_patience: 3
early_stopping_threshold: 0.001
eval_max_new_tokens: 128
eval_steps: 40
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 2
gradient_checkpointing: false
group_by_length: false
hub_model_id: mrferr3t/ce1a2005-ee52-45ee-8f32-03027c38b14f
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0003
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 100
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
micro_batch_size: 32
mlflow_experiment_name: /tmp/30467321b0218499_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 50
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
s2_attention: null
sample_packing: false
save_steps: 40
saves_per_epoch: 0
sequence_len: 512
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.02
wandb_entity: null
wandb_mode: online
wandb_name: f01f50dd-806e-4a8f-9c25-300f4646bd3d
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: f01f50dd-806e-4a8f-9c25-300f4646bd3d
warmup_ratio: 0.05
weight_decay: 0.0
xformers_attention: null

ce1a2005-ee52-45ee-8f32-03027c38b14f

This model is a fine-tuned version of Qwen/Qwen2.5-1.5B on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.4814

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Use adamw_bnb_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 1299
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
No log 0.0010 1 3.1418
No log 0.0385 40 3.0617
No log 0.0770 80 2.3578
2.7405 0.1154 120 1.9472
2.7405 0.1539 160 1.8134
1.8729 0.1924 200 1.7430
1.8729 0.2309 240 1.6926
1.8729 0.2694 280 1.6552
1.6979 0.3078 320 1.6294
1.6979 0.3463 360 1.5977
1.6043 0.3848 400 1.5806
1.6043 0.4233 440 1.5645
1.6043 0.4618 480 1.5476
1.5427 0.5002 520 1.5395
1.5427 0.5387 560 1.5332
1.5321 0.5772 600 1.5244
1.5321 0.6157 640 1.5119
1.5321 0.6542 680 1.5102
1.5327 0.6926 720 1.5054
1.5327 0.7311 760 1.5002
1.5065 0.7696 800 1.5024
1.5065 0.8081 840 1.4940
1.5065 0.8466 880 1.4840
1.5024 0.8850 920 1.4788
1.5024 0.9235 960 1.4758
1.4772 0.9620 1000 1.4725
1.4772 1.0005 1040 1.4676
1.4772 1.0390 1080 1.4773
1.4016 1.0774 1120 1.4743
1.4016 1.1159 1160 1.4814

Framework versions

  • PEFT 0.13.2
  • Transformers 4.46.0
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.1
Downloads last month
9
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and HF Inference API was unable to determine this model’s pipeline type.

Model tree for mrferr3t/ce1a2005-ee52-45ee-8f32-03027c38b14f

Base model

Qwen/Qwen2.5-1.5B
Adapter
(378)
this model