autoevaluator
HF staff
Add verifyToken field to verify evaluation results are produced by Hugging Face's automatic model evaluator
9f0ac91
language: | |
- en | |
license: mit | |
tags: | |
- generated_from_trainer | |
datasets: | |
- glue | |
metrics: | |
- accuracy | |
widget: | |
- text: She was badly wounded already. Another spear would take her down. | |
model-index: | |
- name: deberta-v3-large-mnli-2 | |
results: | |
- task: | |
type: text-classification | |
name: Text Classification | |
dataset: | |
name: GLUE MNLI | |
type: glue | |
args: mnli | |
metrics: | |
- type: accuracy | |
value: 0.8949349064279902 | |
name: Accuracy | |
- task: | |
type: natural-language-inference | |
name: Natural Language Inference | |
dataset: | |
name: glue | |
type: glue | |
config: mnli | |
split: validation_matched | |
metrics: | |
- type: accuracy | |
value: 0.9000509424350484 | |
name: Accuracy | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmU1NTE1YmYwOTA4NmQ3ZWE1MmM0ZDFiNDQ5YWIyMDMyZDhjZWMxYTQ3NGIxOWVkMTQxYTA3MTE2ZTUyYjg0ZiIsInZlcnNpb24iOjF9.UygjleiO4h0rlNa8KJIzJMy2VbMkLF-kB-YowCa_EhLKJQqRr9id5db81MyR_VV3ROrSdHVbCGIM9qxkPRbABg | |
- type: precision | |
value: 0.9000452542826349 | |
name: Precision Macro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2EyMWYxY2ZlNTFhYWRhNjA4MzYxOTI4NDAzMjQwMmI4MTJmMWE3ZWEzZTQwMmMyZTM1MzIxYWEyYzVhNDlmMCIsInZlcnNpb24iOjF9.iq2CgF4ik1_DjPlbmFgxvscryy1NNQjTatCJhDu95sXMdlWkekPS6on3NyEaSDwptKyuTQiF4wh8WZDrfhO_Dw | |
- type: precision | |
value: 0.9000509424350484 | |
name: Precision Micro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmY5NmE1MjU1Yzg3Mzk3MDJiNGUyMzM5NmYxYjljZjY1OTQ3NWE0MWM2MTZhYjQ4ZWFmY2FkODc4OThkMzIxMCIsInZlcnNpb24iOjF9.yN_8lq_IjeLU1WJknAkoj75MQajxLvsIsf_pOPFT0_Q77Vfhu0AsIdy1WDJcsAw08ziJoNpN_2LGDMBYJmwzCQ | |
- type: precision | |
value: 0.9014585350976404 | |
name: Precision Weighted | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTBkYWM4YTE3N2Q5ZmY5ZTRiMGQ1MDc5ODk2NjQwZDc0ODNkMjk3MjdjMjRlZDU2Yzk1MTliMzhmNjYzYzY2ZCIsInZlcnNpb24iOjF9.f9_fAM_a9LwSBwFgwaO5rdAYzV3wkhHq6yquugL1djRlbISZdpzZFWfJHcS-fvgMayYsklBK_ezbu0f7u7tyDg | |
- type: recall | |
value: 0.900253092056111 | |
name: Recall Macro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTkwZTRmYzhjNDMyMDllNzFiYTNkMDdjN2E2NmEzOTdjMzAxNjdmMzg3OTFmN2IwZTlmYWY5MWQyMDUyNWRlMSIsInZlcnNpb24iOjF9.aWtX33vOHaGpePRZwO9dfTfWoWyXYCVAf8W1AlHXZto6Ve2HX9RLISTsALRMfNzX-7B6LYLh6qzusjf2xQ20Bw | |
- type: recall | |
value: 0.9000509424350484 | |
name: Recall Micro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGFhYzVlZjQ3M2YyYjY1NTBiMGI4NmI4MTgwY2QzY2I3YmMyNjc3YmFhMDU1ZjNlY2FkMjQxOTg3YWYyYTU3ZiIsInZlcnNpb24iOjF9.wPD0-SL1vdG3_bi7cKh_hgVwVr1yV6zRYBzpGe6bDEzV5BYb5lCQoAebS5U1o2H4E4qi7zr2YNFEToNCRTqPBA | |
- type: recall | |
value: 0.9000509424350484 | |
name: Recall Weighted | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNThmNjQ4MDY2ZTM3NjQyODQzMTZkNjgyMGNkNDE5MDMwOWJmMzhjZmZjNzllYjA4NmJiZDU3MzU3ODE0YjFhMyIsInZlcnNpb24iOjF9.yN9hb5VWX5ICIXdPBc0OD0BFHnzWv8rmmD--OEh6h1agGiRiyCdROo4saN5CQKiVlPBsHPliaoXra45Xi4gVAg | |
- type: f1 | |
value: 0.8997940135019421 | |
name: F1 Macro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmQzMWZhZTg1ODBmNWFiMGJiZDE5ODA2ZTA3NmUwZDcxMTQ1NzZjNDFiZDZkN2RmMmQ3YzRiMmI2Y2Q3MWRlNiIsInZlcnNpb24iOjF9.lr6jUSxXu6zKs_x-UQT7dL9_PzKTf50KUu7spTzRI6_SkaUyl9Ez0gR-O8bfzypaqkdxvtf7dsNFskpUvJ8wDQ | |
- type: f1 | |
value: 0.9000509424350484 | |
name: F1 Micro | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWFiZjAzYjQ4NjFjMThjM2RlOGU1YzRjMmQzZTNhMDVjYWE3Njg5Y2QwMzc4YzY0ODNjOWUwMDJiNGU4ODk2MyIsInZlcnNpb24iOjF9.BsWoM2Mb4Kx5Lzm7b9GstHNuxGX7emrFNRcepgYNhjkeEhj3yJbvbboOaJuWMc9TdJEPr3o1PuNiu7zQ_vy_DQ | |
- type: f1 | |
value: 0.9003949466748086 | |
name: F1 Weighted | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWQ1NjA2Njc0Njk2YzY0MzIwYTYwMWM5MTZhNzhhZDY2ODgyYzVlODlmN2Q2MjRjNzhhNzMyZDQ1ZmYwMjdlMyIsInZlcnNpb24iOjF9.Xdl4G3GaOXzCRhaoDf_sJThoEQLmlGyf4efJCYFKXCe1DfNb4qOl-_h9LuE3-iacvusjIJFIquhQ7YsLtqbrCg | |
- type: loss | |
value: 0.6493226289749146 | |
name: loss | |
verified: true | |
verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWU0ZGM5MWE2Mjk3NDI5ZGNkZmFhM2IxYmFiZjVkMjdiNTE4NzA5YWMxNDcxOWYxYjA2MmQ3ZmE1Yzk5M2E2OCIsInZlcnNpb24iOjF9.gsO8l1_9H89OaztnG6rhNuOY-ssmafoUSwuyNRPR5TjqwrimWk4S6k2uCSSoV9h_JvtliFQ94aZhgSB2lGxWCg | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# DeBERTa-v3-large fine-tuned on MNLI | |
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the GLUE MNLI dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.6763 | |
- Accuracy: 0.8949 | |
## Model description | |
[DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data. | |
In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we further improved the efficiency of DeBERTa using ELECTRA-Style pre-training with Gradient Disentangled Embedding Sharing. Compared to DeBERTa, our V3 version significantly improves the model performance on downstream tasks. You can find more technique details about the new model from our [paper](https://arxiv.org/abs/2111.09543). | |
Please check the [official repository](https://github.com/microsoft/DeBERTa) for more implementation details and updates. | |
The DeBERTa V3 large model comes with 24 layers and a hidden size of 1024. It has 304M backbone parameters with a vocabulary containing 128K tokens which introduces 131M parameters in the Embedding layer. This model was trained using the 160GB data as DeBERTa V2. | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 3e-05 | |
- train_batch_size: 16 | |
- eval_batch_size: 8 | |
- seed: 42 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- num_epochs: 5.0 | |
- mixed_precision_training: Native AMP | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Accuracy | | |
|:-------------:|:-----:|:------:|:---------------:|:--------:| | |
| 0.3676 | 1.0 | 24544 | 0.3761 | 0.8681 | | |
| 0.2782 | 2.0 | 49088 | 0.3605 | 0.8881 | | |
| 0.1986 | 3.0 | 73632 | 0.4672 | 0.8894 | | |
| 0.1299 | 4.0 | 98176 | 0.5248 | 0.8967 | | |
| 0.0643 | 5.0 | 122720 | 0.6489 | 0.8999 | | |
### Framework versions | |
- Transformers 4.13.0.dev0 | |
- Pytorch 1.10.0+cu111 | |
- Datasets 1.16.1 | |
- Tokenizers 0.10.3 | |