Errors Deploying to Sagemaker
#4
by
zkrider
- opened
Trying to deploy this to AWS Sagemaker and running into some errors:
Error #1
#033[2m2023-08-07T16:02:38.971179Z#033[0m #033[31mERROR#033[0m #033[1mshard-manager#033[0m: #033[2mtext_generation_launcher#033[0m#033[2m:#033[0m Error when initializing model
Error #2
Traceback (most recent call last):
File "/opt/conda/bin/text-generation-server", line 8, in <module>
sys.exit(app())
File "/opt/conda/lib/python3.9/site-packages/typer/main.py", line 311, in __call__
return get_command(self)(*args, **kwargs)
File "/opt/conda/lib/python3.9/site-packages/click/core.py", line 1130, in __call__
return self.main(*args, **kwargs)
File "/opt/conda/lib/python3.9/site-packages/typer/core.py", line 778, in main
return _main(
File "/opt/conda/lib/python3.9/site-packages/typer/core.py", line 216, in _main
rv = self.invoke(ctx)
File "/opt/conda/lib/python3.9/site-packages/click/core.py", line 1657, in invoke
return _process_result(sub_ctx.command.invoke(sub_ctx))
File "/opt/conda/lib/python3.9/site-packages/click/core.py", line 1404, in invoke
return ctx.invoke(self.callback, **ctx.params)
File "/opt/conda/lib/python3.9/site-packages/click/core.py", line 760, in invoke
return __callback(*args, **kwargs)
File "/opt/conda/lib/python3.9/site-packages/typer/main.py", line 683, in wrapper
return callback(**use_params) # type: ignore
File "/opt/conda/lib/python3.9/site-packages/text_generation_server/cli.py", line 67, in serve
server.serve(model_id, revision, sharded, quantize, trust_remote_code, uds_path)
File "/opt/conda/lib/python3.9/site-packages/text_generation_server/server.py", line 155, in serve
asyncio.run(serve_inner(model_id, revision, sharded, quantize, trust_remote_code))
File "/opt/conda/lib/python3.9/asyncio/runners.py", line 44, in run
return loop.run_until_complete(main)
File "/opt/conda/lib/python3.9/asyncio/base_events.py", line 634, in run_until_complete
self.run_forever()
File "/opt/conda/lib/python3.9/asyncio/base_events.py", line 601, in run_forever
self._run_once()
File "/opt/conda/lib/python3.9/asyncio/base_events.py", line 1905, in _run_once
handle._run()
File "/opt/conda/lib/python3.9/asyncio/events.py", line 80, in _run
self._context.run(self._callback, *self._args)
Error #3
> File "/opt/conda/lib/python3.9/site-packages/text_generation_server/server.py", line 124, in serve_inner
model = get_model(model_id, revision, sharded, quantize, trust_remote_code)
File "/opt/conda/lib/python3.9/site-packages/text_generation_server/models/__init__.py", line 246, in get_model
return llama_cls(
File "/opt/conda/lib/python3.9/site-packages/text_generation_server/models/flash_llama.py", line 44, in __init__
tokenizer = LlamaTokenizer.from_pretrained(
File "/usr/src/transformers/src/transformers/tokenization_utils_base.py", line 1812, in from_pretrained
return cls._from_pretrained(
File "/usr/src/transformers/src/transformers/tokenization_utils_base.py", line 1975, in _from_pretrained
tokenizer = cls(*init_inputs, **init_kwargs)
File "/usr/src/transformers/src/transformers/models/llama/tokenization_llama.py", line 96, in __init__
self.sp_model.Load(vocab_file)
File "/opt/conda/lib/python3.9/site-packages/sentencepiece/__init__.py", line 905, in Load
return self.LoadFromFile(model_file)
File "/opt/conda/lib/python3.9/site-packages/sentencepiece/__init__.py", line 310, in LoadFromFile
return _sentencepiece.SentencePieceProcessor_LoadFromFile(self, arg)
Error #4
TypeError: not a string
#033[2m#033[3mrank#033[0m#033[2m=#033[0m0#033[0m
Error #5
#033[2m2023-08-07T16:02:39.602942Z#033[0m #033[31mERROR#033[0m #033[2mtext_generation_launcher#033[0m#033[2m:#033[0m Shard 0 failed to start:
Sagemaker Notebook
import json
import sagemaker
import boto3
from sagemaker.huggingface import HuggingFaceModel, get_huggingface_llm_image_uri
try:
role = sagemaker.get_execution_role()
except ValueError:
iam = boto3.client('iam')
role = iam.get_role(RoleName='sagemaker_execution_role')['Role']['Arn']
# Hub Model configuration. https://huggingface.co/models
hub = {
'HF_MODEL_ID':'mrm8488/llama-2-coder-7b',
'SM_NUM_GPUS': json.dumps(1),
'HF_API_TOKEN': '<token>'
}
# create Hugging Face Model Class
huggingface_model = HuggingFaceModel(
image_uri=get_huggingface_llm_image_uri("huggingface",version="0.8.2"),
env=hub,
role=role,
)
# deploy model to SageMaker Inference
predictor = huggingface_model.deploy(
initial_instance_count=1,
instance_type="ml.g5.2xlarge",
container_startup_health_check_timeout=300,
endpoint_name="llama2coder",
model_name="llama2coder"
)
# send request
predictor.predict({
"inputs": "My name is Julien and I like to",
})