hubert-rinnna-jp-jdrtsp-fw07sp-clean

This model is a fine-tuned version of rinna/japanese-hubert-base on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2393
  • Wer: 0.2187
  • Cer: 0.1210

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Wer Cer
8.6058 1.0 164 6.2883 0.9743 0.9861
4.6616 2.0 328 4.0451 0.9743 0.9861
3.8526 3.0 492 3.5417 0.9743 0.9861
3.2384 4.0 656 3.0505 0.9743 0.9861
2.7948 5.0 820 2.6706 0.9743 0.9861
2.549 6.0 984 2.4268 0.9743 0.9861
2.1808 7.0 1148 1.8554 0.9743 0.9861
1.6069 8.0 1312 1.2551 0.6822 0.6231
1.1916 9.0 1476 0.7985 0.3679 0.2242
0.9977 10.0 1640 0.6234 0.3118 0.1827
0.836 11.0 1804 0.5103 0.2801 0.1643
0.7515 12.0 1968 0.4305 0.2663 0.1549
0.7045 13.0 2132 0.3688 0.2489 0.1413
0.6533 14.0 2296 0.3258 0.2399 0.1340
0.5906 15.0 2460 0.2941 0.2318 0.1288
0.5746 16.0 2624 0.2748 0.2300 0.1278
0.5169 17.0 2788 0.2573 0.2240 0.1242
0.5511 18.0 2952 0.2479 0.2211 0.1228
0.5318 19.0 3116 0.2410 0.2186 0.1210
0.5174 20.0 3280 0.2393 0.2187 0.1210

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.13.3
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mskhattori/hubert-rinnna-jp-jdrtsp-fw07sp-clean

Finetuned
(25)
this model