|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-base |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- mtc/span_absinth_with_articles_german_faithfulness_detection_dataset |
|
model-index: |
|
- name: google-flan-t5-base_MAX-CONTEXT-LEN-1024_MAX-GEN-LEN-256_span_absinth_faithfulness_multi_label_classification_sugary-trellis-2024-07-15 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/background-tool/span_absinth_evaluation/runs/1e5w4pqx) |
|
# google-flan-t5-base_MAX-CONTEXT-LEN-1024_MAX-GEN-LEN-256_span_absinth_faithfulness_multi_label_classification_sugary-trellis-2024-07-15 |
|
|
|
This model is a fine-tuned version of [google/flan-t5-base](https://huggingface.co/google/flan-t5-base) on the mtc/span_absinth_with_articles_german_faithfulness_detection_dataset dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1605 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.9007 | 0.1534 | 100 | 0.5516 | |
|
| 0.2893 | 0.3067 | 200 | 0.2852 | |
|
| 0.2428 | 0.4601 | 300 | 0.2061 | |
|
| 0.2088 | 0.6135 | 400 | 0.1619 | |
|
| 0.1627 | 0.7669 | 500 | 0.1604 | |
|
| 0.1662 | 0.9202 | 600 | 0.1678 | |
|
| 0.1602 | 1.0736 | 700 | 0.1578 | |
|
| 0.1219 | 1.2270 | 800 | 0.1594 | |
|
| 0.1135 | 1.3804 | 900 | 0.1677 | |
|
| 0.1024 | 1.5337 | 1000 | 0.1620 | |
|
| 0.111 | 1.6871 | 1100 | 0.1586 | |
|
| 0.1053 | 1.8405 | 1200 | 0.1542 | |
|
| 0.0922 | 1.9939 | 1300 | 0.1526 | |
|
| 0.087 | 2.1472 | 1400 | 0.1585 | |
|
| 0.1259 | 2.3006 | 1500 | 0.1552 | |
|
| 0.1027 | 2.4540 | 1600 | 0.1584 | |
|
| 0.0771 | 2.6074 | 1700 | 0.1591 | |
|
| 0.0918 | 2.7607 | 1800 | 0.1609 | |
|
| 0.0782 | 2.9141 | 1900 | 0.1604 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.42.2 |
|
- Pytorch 2.3.0+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |
|
|