bert-base-uncased-tajik-ner

This model is a fine-tuned version of bert-base-uncased on the wikiann dataset. It achieves the following results on the evaluation set:

  • Loss: 1.2137
  • Precision: 0.5042
  • Recall: 0.5769
  • F1: 0.5381
  • Accuracy: 0.8481

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 2.0 50 0.9499 0.0450 0.0962 0.0613 0.6626
No log 4.0 100 0.7348 0.1549 0.2115 0.1789 0.7401
No log 6.0 150 0.6685 0.1916 0.3077 0.2362 0.8017
No log 8.0 200 0.7875 0.3923 0.4904 0.4359 0.8036
No log 10.0 250 0.7495 0.4225 0.5769 0.4878 0.8274
No log 12.0 300 0.8934 0.4198 0.5288 0.4681 0.8085
No log 14.0 350 0.9455 0.4758 0.5673 0.5175 0.8236
No log 16.0 400 0.9469 0.5893 0.6346 0.6111 0.8410
No log 18.0 450 0.9936 0.5333 0.6154 0.5714 0.8485
0.2726 20.0 500 0.9804 0.5 0.6058 0.5478 0.8519
0.2726 22.0 550 1.1035 0.5963 0.625 0.6103 0.8432
0.2726 24.0 600 1.0318 0.5856 0.625 0.6047 0.8576
0.2726 26.0 650 1.1820 0.4921 0.5962 0.5391 0.8221
0.2726 28.0 700 1.1204 0.4878 0.5769 0.5286 0.8311
0.2726 30.0 750 1.1911 0.5357 0.5769 0.5556 0.8376
0.2726 32.0 800 1.1747 0.5259 0.5865 0.5545 0.8394
0.2726 34.0 850 1.1403 0.5872 0.6154 0.6009 0.8542
0.2726 36.0 900 1.1824 0.5370 0.5577 0.5472 0.8330
0.2726 38.0 950 1.1467 0.5424 0.6154 0.5766 0.8440
0.003 40.0 1000 1.2148 0.5268 0.5673 0.5463 0.8360
0.003 42.0 1050 1.3478 0.5273 0.5577 0.5421 0.8266
0.003 44.0 1100 1.2137 0.5042 0.5769 0.5381 0.8481

Framework versions

  • Transformers 4.21.2
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1
Downloads last month
15
Safetensors
Model size
109M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for muhtasham/bert-base-uncased-tajik-ner

Finetuned
(2396)
this model

Dataset used to train muhtasham/bert-base-uncased-tajik-ner

Collection including muhtasham/bert-base-uncased-tajik-ner

Evaluation results