OpenLLaMA Code Instruct: An Open Reproduction of LLaMA

This is an OpenLlama model that has been fine-tuned on 1 epoch of the AlpacaCode dataset (122K rows).

Prompt Template

### Instruction:

{query}

### Response:
<Leave new line for model to respond> 

Usage

from transformers import AutoTokenizer, AutoModelForCausalLM,pipeline

tokenizer = AutoTokenizer.from_pretrained("mwitiderrick/open_llama_3b_code_instruct_0.1")
model = AutoModelForCausalLM.from_pretrained("mwitiderrick/open_llama_3b_code_instruct_0.1")
query = "Write a quick sort algorithm in Python"
text_gen = pipeline(task="text-generation", model=model, tokenizer=tokenizer, max_length=200)
output = text_gen(f"### Instruction:\n{query}\n### Response:\n")
print(output[0]['generated_text'])
"""
### Instruction:
write a quick sort algorithm in Python
### Response:
def quick_sort(arr):
    if len(arr) <= 1:
        return arr
    else:
        pivot = arr[len(arr) // 2]
        left = [x for x in arr if x < pivot]
        middle = [x for x in arr if x == pivot]
        right = [x for x in arr if x > pivot]
        return quick_sort(left) + middle + quick_sort(right)

arr = [5,2,4,3,1]
print(quick_sort(arr))
"""
[1, 2, 3, 4, 5]
"""

Metrics

Detailed metrics

|  Tasks   |Version|Filter|n-shot|Metric|Value |   |Stderr|
|----------|-------|------|-----:|------|-----:|---|-----:|
|winogrande|Yaml   |none  |     0|acc   |0.6267|±  |0.0136|
|hellaswag|Yaml   |none  |     0|acc     |0.4962|±  |0.0050|
|         |       |none  |     0|acc_norm|0.6581|±  |0.0047|
|arc_challenge|Yaml   |none  |     0|acc     |0.3481|±  |0.0139|
|             |       |none  |     0|acc_norm|0.3712|±  |0.0141|
|truthfulqa|N/A    |none  |     0|bleu_max   | 24.2580|±  |0.5985|
|          |       |none  |     0|bleu_acc   |  0.2876|±  |0.0003|
|          |       |none  |     0|bleu_diff  | -8.3685|±  |0.6065|
|          |       |none  |     0|rouge1_max | 49.3907|±  |0.7350|
|          |       |none  |     0|rouge1_acc |  0.2558|±  |0.0002|
|          |       |none  |     0|rouge1_diff|-10.6617|±  |0.6450|
|          |       |none  |     0|rouge2_max | 32.4189|±  |0.9587|
|          |       |none  |     0|rouge2_acc |  0.2142|±  |0.0002|
|          |       |none  |     0|rouge2_diff|-12.9903|±  |0.9539|
|          |       |none  |     0|rougeL_max | 46.2337|±  |0.7493|
|          |       |none  |     0|rougeL_acc |  0.2424|±  |0.0002|
|          |       |none  |     0|rougeL_diff|-11.0285|±  |0.6576|
|          |       |none  |     0|acc        |  0.3072|±  |0.0405|

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 39.72
AI2 Reasoning Challenge (25-Shot) 41.21
HellaSwag (10-Shot) 66.96
MMLU (5-Shot) 27.82
TruthfulQA (0-shot) 35.01
Winogrande (5-shot) 65.43
GSM8k (5-shot) 1.90
Downloads last month
905
Safetensors
Model size
3.43B params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mwitiderrick/open_llama_3b_code_instruct_0.1

Finetuned
(7)
this model
Finetunes
1 model
Merges
1 model
Quantizations
1 model

Dataset used to train mwitiderrick/open_llama_3b_code_instruct_0.1

Evaluation results