See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: trl-internal-testing/tiny-random-LlamaForCausalLM
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- 74f2973513629fe9_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/74f2973513629fe9_train_data.json
type:
field_input: taxa
field_instruction: gene_type
field_output: msa
format: '{instruction} {input}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device: cuda
early_stopping_patience: null
eval_max_new_tokens: 128
eval_table_size: null
evals_per_epoch: 4
flash_attention: false
fp16: null
fsdp: null
fsdp_config:
max_steps: 50
weight_decay: 0.01
gradient_accumulation_steps: 4
gradient_checkpointing: false
group_by_length: false
hub_model_id: nadejdatarabukina/66e382fe-f019-4a3a-8964-27bc12c38fb3
hub_repo: null
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 16
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_memory:
0: 70GiB
max_steps: 50
micro_batch_size: 2
mlflow_experiment_name: /tmp/74f2973513629fe9_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 70
sequence_len: 1024
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: null
wandb_mode: online
wandb_name: 66e382fe-f019-4a3a-8964-27bc12c38fb3
wandb_project: Gradients-On-Demand
wandb_run: your_name
wandb_runid: 66e382fe-f019-4a3a-8964-27bc12c38fb3
warmup_steps: 10
weight_decay: 0.0
xformers_attention: null
66e382fe-f019-4a3a-8964-27bc12c38fb3
This model is a fine-tuned version of trl-internal-testing/tiny-random-LlamaForCausalLM on the None dataset. It achieves the following results on the evaluation set:
- Loss: 10.3443
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- training_steps: 50
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
10.3604 | 0.0006 | 1 | 10.3623 |
10.3614 | 0.0030 | 5 | 10.3617 |
10.3592 | 0.0059 | 10 | 10.3596 |
10.3556 | 0.0089 | 15 | 10.3565 |
10.353 | 0.0118 | 20 | 10.3534 |
10.3498 | 0.0148 | 25 | 10.3505 |
10.3487 | 0.0177 | 30 | 10.3479 |
10.3453 | 0.0207 | 35 | 10.3461 |
10.3454 | 0.0236 | 40 | 10.3450 |
10.3431 | 0.0266 | 45 | 10.3444 |
10.3428 | 0.0296 | 50 | 10.3443 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 13