nalindew's picture
Model save
769f2bc verified
|
raw
history blame
2.3 kB
metadata
license: mit
base_model: shi-labs/nat-mini-in1k-224
tags:
  - generated_from_trainer
datasets:
  - image_folder
metrics:
  - accuracy
  - f1
model-index:
  - name: nat-mini-in1k-224-finetuned-breakhis
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: image_folder
          type: image_folder
          config: default
          split: train
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.9669421487603306
          - name: F1
            type: f1
            value: 0.9612429172231991

nat-mini-in1k-224-finetuned-breakhis

This model is a fine-tuned version of shi-labs/nat-mini-in1k-224 on the image_folder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0983
  • Accuracy: 0.9669
  • F1: 0.9612
  • Roc Auc: 0.9648

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 128
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Roc Auc
0.3247 0.99 59 0.2084 0.9157 0.8968 0.8836
0.1338 2.0 119 0.1686 0.9355 0.9266 0.9437
0.1078 2.99 178 0.0986 0.9694 0.9636 0.9597
0.0795 4.0 238 0.0957 0.9719 0.9668 0.9660
0.0522 4.96 295 0.0983 0.9669 0.9612 0.9648

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.1.2
  • Datasets 2.1.0
  • Tokenizers 0.15.2