|
--- |
|
library_name: transformers |
|
tags: |
|
- experimental |
|
base_model: |
|
- nbeerbower/llama-3-bophades-v1-8B |
|
datasets: |
|
- jondurbin/gutenberg-dpo-v0.1 |
|
- jondurbin/truthy-dpo-v0.1 |
|
- flammenai/FlameMix-DPO-v1 |
|
license: llama3 |
|
--- |
|
|
|
# llama-3-sauce-v2-8B |
|
|
|
This model is based on Llama-3-8b, and is governed by [META LLAMA 3 COMMUNITY LICENSE AGREEMENT](LICENSE) |
|
|
|
This is a bad finetune on nbeerbower/llama-3-spicy-abliterated-stella-8B using various DPO sets. |
|
|
|
# Chat Format |
|
|
|
Please use the ChatML format or you may experience poor results. |
|
|
|
``` |
|
<|im_start|>system |
|
{System Prompt Here!}<|im_end|> |
|
<|im_start|>assistant |
|
{Message from AI}<|im_end|> |
|
<|im_start|>user |
|
{Message from User}<|im_end|> |
|
``` |
|
|
|
# Method |
|
|
|
Finetuned using an A100 on Google Colab. |
|
|
|
[Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co/mlabonne) |
|
|
|
### Configuration |
|
|
|
Dataset preparation: |
|
|
|
```python |
|
def chatml_format(example): |
|
# Format system |
|
system = "" |
|
if example.get('system') and len(example['system']) > 0: |
|
systemMessage = example['system'] |
|
system = "<|im_start|>system\n" + systemMessage + "<|im_end|>\n" |
|
|
|
# Format instruction |
|
prompt = "<|im_start|>user\n" + example['prompt'] + "<|im_end|>\n<|im_start|>assistant\n" |
|
|
|
# Format chosen answer |
|
chosen = example['chosen'] + "<|im_end|>\n" |
|
|
|
# Format rejected answer |
|
rejected = example['rejected'] + "<|im_end|>\n" |
|
|
|
return { |
|
"prompt": system + prompt, |
|
"chosen": chosen, |
|
"rejected": rejected, |
|
} |
|
|
|
# Array of datasets to concat |
|
ds = [ |
|
"jondurbin/truthy-dpo-v0.1", |
|
"jondurbin/gutenberg-dpo-v0.1", |
|
"flammenai/FlameMix-DPO-v1" |
|
] |
|
|
|
# load_dataset and combine all |
|
loaded_datasets = [load_dataset(dataset_name, split='train') for dataset_name in ds] |
|
dataset = concatenate_datasets(loaded_datasets) |
|
|
|
# Save columns |
|
original_columns = dataset.column_names |
|
|
|
# Tokenizer |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
tokenizer.padding_side = "left" |
|
|
|
# Format dataset |
|
dataset = dataset.map( |
|
chatml_format, |
|
remove_columns=original_columns |
|
) |
|
``` |
|
|
|
LoRA, model, and training settings: |
|
|
|
```python |
|
# LoRA configuration |
|
peft_config = LoraConfig( |
|
r=16, |
|
lora_alpha=16, |
|
lora_dropout=0.05, |
|
bias="none", |
|
task_type="CAUSAL_LM", |
|
target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] |
|
) |
|
# Model to fine-tune |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
load_in_4bit=True |
|
) |
|
model.config.use_cache = False |
|
# Reference model |
|
ref_model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
load_in_4bit=True |
|
) |
|
# Training arguments |
|
training_args = TrainingArguments( |
|
per_device_train_batch_size=1, |
|
gradient_accumulation_steps=1, |
|
gradient_checkpointing=True, |
|
learning_rate=3e-5, |
|
lr_scheduler_type="cosine", |
|
max_steps=4000, |
|
save_strategy="no", |
|
logging_steps=1, |
|
output_dir=new_model, |
|
optim="paged_adamw_32bit", |
|
warmup_steps=100, |
|
bf16=True, |
|
report_to="wandb", |
|
) |
|
# Create DPO trainer |
|
dpo_trainer = DPOTrainer( |
|
model, |
|
ref_model, |
|
args=training_args, |
|
train_dataset=dataset, |
|
tokenizer=tokenizer, |
|
peft_config=peft_config, |
|
beta=0.1, |
|
force_use_ref_model=True |
|
) |
|
# Fine-tune model with DPO |
|
dpo_trainer.train() |
|
``` |