Pathumma Whisper Medium (Th)

Model Description

Additional information is needed

Quickstart

You can transcribe audio files using the pipeline class with the following code snippet:

import torch
from transformers import pipeline

device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if torch.cuda.is_available() else torch.float32

lang = "th"
task = "transcribe"

pipe = pipeline(
    task="automatic-speech-recognition",
    model="nectec/Pathumma-whisper-th-medium",
    torch_dtype=torch_dtype,
    device=device,
)
pipe.model.config.forced_decoder_ids = pipe.tokenizer.get_decoder_prompt_ids(language=lang, task=task)

text = pipe("audio_path.wav")["text"]
print(text)

Limitations and Future Work

Additional information is needed

Acknowledgements

We extend our appreciation to the research teams engaged in the creation of the open speech model, including AIResearch, BiodatLab, Looloo Technology, SCB 10X, and OpenAI. We would like to express our gratitude to Dr. Titipat Achakulwisut of BiodatLab for the evaluation pipeline. We express our gratitude to ThaiSC, or NSTDA Supercomputer Centre, for supplying the LANTA used for model training, fine-tuning, and evaluation.

Pathumma Audio Team

Pattara Tipaksorn, Wayupuk Sommuang, Kwanchiva Thangthai

Citation

@misc{tipaksorn2024PathummaWhisper,
    title        = { {Pathumma Whisper Medium (TH)} },
    author       = { Pattara Tipaksorn and Wayupuk Sommuang and Kwanchiva Thangthai },
    url          = { https://huggingface.co/nectec/Pathumma-whisper-th-medium },
    publisher    = { Hugging Face },
    year         = { 2024 },
}
Downloads last month
143
Safetensors
Model size
764M params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for nectec/Pathumma-whisper-th-medium

Finetuned
(549)
this model