SentenceTransformer based on thenlper/gte-base
This is a sentence-transformers model finetuned from thenlper/gte-base. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: thenlper/gte-base
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("neel2306/gte-cp-base")
# Run inference
sentences = [
'Mineral Fuels, Lubricants Etc.',
'Crude oil',
'Coal',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 10,932 training samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 9.91 tokens
- max: 48 tokens
- min: 3 tokens
- mean: 6.05 tokens
- max: 17 tokens
- min: 3 tokens
- mean: 5.08 tokens
- max: 14 tokens
- Samples:
anchor positive negative Clay Floor And Wall Tile, Glazed And Unglazed (Including Quarry Tile And Ceramic Mosaic Tile)
Ceramic mosaic tiles
Natural stone tiles
Electrical Relay/Conductor
Relay switches
Electrical insulators
Plasterer (Kelowna, British Columbia 5 13) (Union Rate)
Labor costs for plasterers
Painting supplies
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 2,733 evaluation samples
- Columns:
anchor
,positive
, andnegative
- Approximate statistics based on the first 1000 samples:
anchor positive negative type string string string details - min: 3 tokens
- mean: 10.09 tokens
- max: 53 tokens
- min: 3 tokens
- mean: 6.06 tokens
- max: 21 tokens
- min: 3 tokens
- mean: 4.95 tokens
- max: 14 tokens
- Samples:
anchor positive negative Asphalt Paving Mixture and Block Manufacturing
Recycled asphalt pavement (RAP)
Asphalt shingles
Air Conditioning Plant
Refrigerant gases
Heating elements
Oak Lumber
Oak plywood
Pine lumber
- Loss:
MultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16learning_rate
: 6e-05num_train_epochs
: 10warmup_ratio
: 0.1optim
: adamw_hfbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 6e-05weight_decay
: 0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_hfoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0731 | 50 | 1.9026 | 1.5169 |
0.1462 | 100 | 1.5479 | 1.0813 |
0.2193 | 150 | 1.0239 | 0.7291 |
0.2924 | 200 | 0.6914 | 0.6372 |
0.3655 | 250 | 0.653 | 0.5887 |
0.4386 | 300 | 0.5469 | 0.5605 |
0.5117 | 350 | 0.5312 | 0.5408 |
0.5848 | 400 | 0.4996 | 0.5100 |
0.6579 | 450 | 0.4445 | 0.4830 |
0.7310 | 500 | 0.5092 | 0.4734 |
0.8041 | 550 | 0.532 | 0.4476 |
0.8772 | 600 | 0.4147 | 0.4714 |
0.9503 | 650 | 0.477 | 0.4400 |
1.0234 | 700 | 0.4243 | 0.4466 |
1.0965 | 750 | 0.485 | 0.4172 |
1.1696 | 800 | 0.3717 | 0.4271 |
1.2427 | 850 | 0.3716 | 0.4369 |
1.3158 | 900 | 0.3742 | 0.4104 |
1.3889 | 950 | 0.3157 | 0.4436 |
1.4620 | 1000 | 0.3035 | 0.4444 |
1.5351 | 1050 | 0.2797 | 0.4558 |
1.6082 | 1100 | 0.2639 | 0.4248 |
1.6813 | 1150 | 0.2286 | 0.4308 |
1.7544 | 1200 | 0.2753 | 0.4098 |
1.8275 | 1250 | 0.1904 | 0.4415 |
1.9006 | 1300 | 0.2175 | 0.4503 |
1.9737 | 1350 | 0.1806 | 0.4245 |
2.0468 | 1400 | 0.1826 | 0.4418 |
2.1199 | 1450 | 0.1952 | 0.4138 |
2.1930 | 1500 | 0.1612 | 0.4061 |
2.2661 | 1550 | 0.1604 | 0.3910 |
2.3392 | 1600 | 0.1199 | 0.3852 |
2.4123 | 1650 | 0.1439 | 0.4082 |
2.4854 | 1700 | 0.1402 | 0.4352 |
2.5585 | 1750 | 0.1116 | 0.4338 |
2.6316 | 1800 | 0.1113 | 0.4189 |
2.7047 | 1850 | 0.1159 | 0.4013 |
2.7778 | 1900 | 0.1241 | 0.3853 |
2.8509 | 1950 | 0.0977 | 0.3919 |
2.9240 | 2000 | 0.0953 | 0.4022 |
2.9971 | 2050 | 0.1159 | 0.4073 |
3.0702 | 2100 | 0.0923 | 0.3903 |
3.1433 | 2150 | 0.0958 | 0.3833 |
3.2164 | 2200 | 0.0787 | 0.3875 |
3.2895 | 2250 | 0.083 | 0.3807 |
3.3626 | 2300 | 0.0714 | 0.3806 |
3.4357 | 2350 | 0.0748 | 0.3997 |
3.5088 | 2400 | 0.0779 | 0.4027 |
3.5819 | 2450 | 0.0709 | 0.3921 |
3.6550 | 2500 | 0.0482 | 0.3905 |
3.7281 | 2550 | 0.0784 | 0.3760 |
3.8012 | 2600 | 0.0694 | 0.3809 |
3.8743 | 2650 | 0.0725 | 0.3957 |
3.9474 | 2700 | 0.0718 | 0.3897 |
4.0205 | 2750 | 0.05 | 0.3894 |
4.0936 | 2800 | 0.0597 | 0.4014 |
4.1667 | 2850 | 0.0445 | 0.3929 |
4.2398 | 2900 | 0.039 | 0.3856 |
4.3129 | 2950 | 0.0405 | 0.3723 |
4.3860 | 3000 | 0.0456 | 0.3764 |
4.4591 | 3050 | 0.0493 | 0.3876 |
4.5322 | 3100 | 0.036 | 0.3866 |
4.6053 | 3150 | 0.0517 | 0.3791 |
4.6784 | 3200 | 0.0383 | 0.3724 |
4.7515 | 3250 | 0.0453 | 0.3886 |
4.8246 | 3300 | 0.0469 | 0.3897 |
4.8977 | 3350 | 0.0385 | 0.3940 |
4.9708 | 3400 | 0.0427 | 0.3877 |
5.0439 | 3450 | 0.0212 | 0.3914 |
5.1170 | 3500 | 0.0452 | 0.3899 |
5.1901 | 3550 | 0.0252 | 0.3925 |
5.2632 | 3600 | 0.0228 | 0.3895 |
5.3363 | 3650 | 0.0219 | 0.3792 |
5.4094 | 3700 | 0.0275 | 0.3882 |
5.4825 | 3750 | 0.0246 | 0.3892 |
5.5556 | 3800 | 0.0226 | 0.3895 |
5.6287 | 3850 | 0.0219 | 0.3912 |
5.7018 | 3900 | 0.027 | 0.3800 |
5.7749 | 3950 | 0.0268 | 0.3667 |
5.8480 | 4000 | 0.0313 | 0.3687 |
5.9211 | 4050 | 0.0233 | 0.3675 |
5.9942 | 4100 | 0.0201 | 0.3649 |
6.0673 | 4150 | 0.0207 | 0.3727 |
6.1404 | 4200 | 0.0175 | 0.3802 |
6.2135 | 4250 | 0.0117 | 0.3760 |
6.2865 | 4300 | 0.0124 | 0.3731 |
6.3596 | 4350 | 0.0164 | 0.3713 |
6.4327 | 4400 | 0.0149 | 0.3782 |
6.5058 | 4450 | 0.0127 | 0.3747 |
6.5789 | 4500 | 0.013 | 0.3746 |
6.6520 | 4550 | 0.0078 | 0.3756 |
6.7251 | 4600 | 0.0171 | 0.3741 |
6.7982 | 4650 | 0.0211 | 0.3680 |
6.8713 | 4700 | 0.0186 | 0.3686 |
6.9444 | 4750 | 0.0213 | 0.3688 |
7.0175 | 4800 | 0.0107 | 0.3647 |
7.0906 | 4850 | 0.011 | 0.3677 |
7.1637 | 4900 | 0.0098 | 0.3671 |
7.2368 | 4950 | 0.0091 | 0.3708 |
7.3099 | 5000 | 0.0074 | 0.3673 |
7.3830 | 5050 | 0.0101 | 0.3672 |
7.4561 | 5100 | 0.0115 | 0.3676 |
7.5292 | 5150 | 0.0054 | 0.3656 |
7.6023 | 5200 | 0.0076 | 0.3657 |
7.6754 | 5250 | 0.0054 | 0.3639 |
7.7485 | 5300 | 0.0115 | 0.3600 |
7.8216 | 5350 | 0.0105 | 0.3657 |
7.8947 | 5400 | 0.0175 | 0.3649 |
7.9678 | 5450 | 0.0091 | 0.3634 |
8.0409 | 5500 | 0.0043 | 0.3646 |
8.1140 | 5550 | 0.0078 | 0.3650 |
8.1871 | 5600 | 0.004 | 0.3683 |
8.2602 | 5650 | 0.0045 | 0.3669 |
8.3333 | 5700 | 0.005 | 0.3661 |
8.4064 | 5750 | 0.0074 | 0.3652 |
8.4795 | 5800 | 0.0042 | 0.3662 |
8.5526 | 5850 | 0.0039 | 0.3696 |
8.6257 | 5900 | 0.004 | 0.3724 |
8.6988 | 5950 | 0.008 | 0.3714 |
8.7719 | 6000 | 0.0057 | 0.3711 |
8.8450 | 6050 | 0.0045 | 0.3702 |
8.9181 | 6100 | 0.0122 | 0.3715 |
8.9912 | 6150 | 0.0064 | 0.3703 |
9.0643 | 6200 | 0.0039 | 0.3689 |
9.1374 | 6250 | 0.0034 | 0.3680 |
9.2105 | 6300 | 0.0022 | 0.3680 |
9.2836 | 6350 | 0.0021 | 0.3684 |
9.3567 | 6400 | 0.0025 | 0.3685 |
9.4298 | 6450 | 0.0041 | 0.3679 |
9.5029 | 6500 | 0.0018 | 0.3679 |
9.5760 | 6550 | 0.0039 | 0.3686 |
9.6491 | 6600 | 0.0021 | 0.3691 |
9.7222 | 6650 | 0.0056 | 0.3689 |
9.7953 | 6700 | 0.0025 | 0.3691 |
9.8684 | 6750 | 0.0063 | 0.3692 |
9.9415 | 6800 | 0.0074 | 0.3692 |
Framework Versions
- Python: 3.12.6
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.4.1+cpu
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 4
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for neel2306/gte-cp-base
Base model
thenlper/gte-base