Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: Qwen/Qwen2.5-7B-Instruct
trust_remote_code: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: medalpaca/medical_meadow_medqa
    type: alpaca
dataset_prepared_path:
val_set_size: 0.2
output_dir: ./qlora-qwen25

sequence_len: 8192
sample_packing: true
eval_sample_packing: true
pad_to_sequence_len: true

adapter: qlora
lora_model_dir:
lora_r: 256
lora_alpha: 128
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:

wandb_project:
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:

gradient_accumulation_steps: 1
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_torch
lr_scheduler: cosine
learning_rate: 0.00002

train_on_inputs: false
group_by_length: false
bf16: true
fp16:
tf32: 

gradient_checkpointing: true
gradient_checkpointing_kwargs:
  use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps:
evals_per_epoch: 4
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
  - full_shard
  - auto_wrap
fsdp_config:
  fsdp_limit_all_gathers: true
  fsdp_sync_module_states: true
  fsdp_offload_params: true
  fsdp_use_orig_params: false
  fsdp_cpu_ram_efficient_loading: true
  fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
  fsdp_transformer_layer_cls_to_wrap: Qwen2DecoderLayer
  fsdp_state_dict_type: FULL_STATE_DICT
  fsdp_sharding_strategy: FULL_SHARD
special_tokens:

wandb_project: qwen-25-7b-instruct
wandb_entity: 
wandb_watch:
wandb_name: 
wandb_log_model: 

hub_model_id: neginashz/qlora-qwen-25-7b-instruct
hub_strategy: 
early_stopping_patience:

resume_from_checkpoint:
auto_resume_from_checkpoints: true
early_stopping_patience:

qlora-qwen-25-7b-instruct

This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the medalpaca/medical_meadow_medqa dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1303

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 4
  • total_eval_batch_size: 4
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 2
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
0.1473 0.25 18 0.1576
0.1456 0.5 36 0.1333
0.121 0.75 54 0.1312
0.1328 1.0 72 0.1303

Framework versions

  • PEFT 0.14.0
  • Transformers 4.47.0
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.21.0
Downloads last month
5
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for neginashz/qlora-qwen-25-7b-instruct

Base model

Qwen/Qwen2.5-7B
Adapter
(151)
this model

Dataset used to train neginashz/qlora-qwen-25-7b-instruct